Multi-class pneumonia detection using fine-tuned vision transformer model

International Journal of Electrical and Computer Engineering

Multi-class pneumonia detection using fine-tuned vision transformer model

Abstract

Distinguishing between the various forms of pneumonia (bacterial, viral, fungal, and normal) using chest X-rays is a major problem in global health. Conventional approaches to pneumonia identification frequently depend on laborious and error-prone manual interpretation. Current machine learning (ML) models, like convolutional neural networks (CNNs), have demonstrated some success, but they frequently fail on jobs requiring multi-class classification or generalization. The potential of vision transformer (ViT) models, fine-tuned to address these limitations, is explored. The approach enhances the accuracy of pneumonia classification into four distinct classes by leveraging the attention mechanism in vision transformers (ViTs). Fine-tuning with a tagged chest X-ray dataset improves the algorithm's ability to detect subtle variations in pneumonia types. The findings demonstrate the model's effectiveness in multi-class pneumonia diagnosis, achieving a significant performance improvement with 98% accuracy across the four classes. This work highlights the promise of vision transformers in medical imaging, enabling the development of improved and scalable pneumonia classification methods.

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration