An innovative design and development of multilevel inverter for a wind energy conversion system
International Journal of Advances in Applied Sciences

Abstract
The drawbacks of fossil fuel-based energy sources, including high costs, pollution, scarcity, and environmental damage, highlight how urgent it is to switch to renewable energy sources. Multilevel inverters (MLIs) are currently required for the production of wind electricity. In this research, to get a reduced harmonic distortion, use 31-level inverter based on shifted carrier-pulse width modulation (SC-PWM) is developed for wind power generation using MATLAB/Simulink. It aids in minimizing the total harmonic distortion (THD) to 3.20, and the output voltage is enhanced by the suggested MLI. Wind energy extraction is optimized by combining with a proportional integral derivative (PID) control system. MATLAB/Simulink has been used to make sure the MLI structure and look into the implementation of wind energy conversion systems using a permanent magnet synchronous generator (PMSG). In order to show that the suggested inverter architecture improves power conversion efficiency and stability in renewable energy systems, the study also examines power efficiency, system dependability, and the viability of large-scale applications. Additionally, the study investigates grid integration, modulation strategies, and switching losses to guarantee increased sustainability, dependability, and efficiency in wind energy applications while lowering operating costs.
Discover Our Library
Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.
