Resonant converter for fast-charging applications

International Journal of Power Electronics and Drive Systems

Resonant converter for fast-charging applications

Abstract

Resonant converters (RCs) are gaining attention from the research community due to their significant contributions to the architecture of electric vehicle (EV) charging infrastructure. The primary part of RC is responsible for enabling constant-current (CC) charging, which helps lower inrush current, decrease losses, and improve efficiency. While the load current stays constant during charging using the CC approach, the source current grows linearly with charging time. However, pulling a high source current increases the rating of the inverter switches, which stresses them, raises their temperature, increases heat sink demand, and causes conduction loss—all of which are undesirable. Consequently, the rated CC is provided by the P2 topology of RC, which has a lower peak current source than other topologies and will improve charger performance. However, this assertion must be verified by mathematical modeling, design with theoretical calculations, specifications, and MATLAB simulation before execution. By providing a constant load current of 5 A at a DC source voltage of 200 V, the P2 RC and the conventional LCL RC are designed to compare source current values.

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration