Five-Tier BI architecture with tuned decision trees for e-commerce prediction

Indonesian Journal of Electrical Engineering and Computer Science

Five-Tier BI architecture with tuned decision trees for e-commerce prediction

Abstract

In recent times, remarkable performance has been shown by large language models (LLMs) in a range of natural language processing (NLP) such as questioning, responding, document production, and translating languages. In today's competitive business landscape, understanding consumer behaviour in online buying is crucial for the success of e-commerce platforms. The work proposes a novel Five-Tier service-oriented BI architecture (FSOBIA) that leverages advanced tuned decision tree (ATDT) techniques for predicting online buying behaviour. The proposed FSOBIA offers e-commerce platforms a scalable and adaptable solution for gaining insights into consumer preferences and making informed business decisions. The goal of FSOBIA's design and implementation is to meet the needs of evolving users and quicker service. Experimental evaluations on real-world datasets in FSOBIA achieved over 95% prediction accuracy, outperforming traditional models: Decision trees (82%), and XGBoost (91%), while offering better scalability and computational efficiency.

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration