Deep transfer learning based disease detection and classification of tomato leaves - a comparative analysis
Telecommunication Computing Electronics and Control

Abstract
A wide variety of diseases have a significant impact on tomato plants. To avoid crop quality issues, a prompt and precise diagnosis is crucial. Classifying plant diseases is one of the numerous applications where deep transfer learning models have recently produced remarkable results. This study dealt with fine-tuning by contrasting the most advanced architectures, including Inception V3, ResNet-18, ResNet-50, VGG-16, VGG-19, GoogLeNet, and AlexNet. In the end, a comparison evaluation is conducted. Nine distinct tomato disease classes and one healthy class from PlantVillage make up the dataset used in this study. Precision, recall, F1-score, and accuracy were the basis for a multiclass statistical analysis that assessed the models. The ResNet-50 approach yielded significant results with precision: 82%, recall: 81%, F1-score: 81%, and accuracy: 85%. With this high success rate, it is reasonable to say that mobile applications or IoT-compatible gadgets implemented with the ResNet-50 model can assist farmers in identifying and safeguarding tomatoes against the aforementioned diseases.
Discover Our Library
Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.
