Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

28,428 Article Results

Optimized data security and storage using improved blowfish and modular encryption in cloud-based internet of things

10.11591/ijai.v14.i4.pp2667-2675
Saritha Ibakkanavar Guddappa , Sowmyashree Malligehalli Shivakumaraswamy , Naveen Ibakkanavar Guddappa
The increasing development of the internet of things (IoT) has made cloud-based storage systems essential for storing, processing, and sharing IoT data. Ensuring cloud security is crucial as it manages a large volume of sensitive and outsourced data vulnerable to unauthorized access. This research proposes an improved blowfish algorithm and modular encryption standard (IBA-MES) for secure and efficient data storage in cloud-based IoT systems. The block cipher structure in IBA enables scaling for different data sizes, ensuring secure data handling across a wide range of IoT devices. Additionally, IBA-MES adaptability helps maintain data integrity, enhancing both the security and efficiency of data storage in cloud-based IoT environments. Modular encryption standard (MES) reduces latency during encryption operations, ensuring quick data transactions between the cloud server and IoT devices. By combining blowfish’s speed and strength with modular encryption’s adaptability, IBA-MES provides robust data protection. Metrics such as execution time, central processing unit (CPU) usage, encryption time, decryption time, runtime, and latency are calculated for the proposed IBA-MES. For 700 blocks, the IBA-MES achieves encryption and decryption times of 270 and 415 ms, respectively, outperforming the triple data encryption standard (TDES).
Volume: 14
Issue: 4
Page: 2667-2675
Publish at: 2025-08-01

Hybrid forecasting methods across varied domains-a systematic review

10.11591/ijai.v14.i4.pp2601-2612
Malvina Xhabafti , Valentina Sinaj
Time series forecasting is one of the links that has developed since early times due to risk management, efficient allocation of resources, performance evaluation, strategic planning, and the formulation of effective policies for individuals, organizations, and societies. Forecasting models have evolved steadily by hybridizing statistical and neural network techniques ensuring efficiency and accurate predictions. In this paper, a systematic review of the literature was made through the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology, highlighting the domains that mostly use hybrid techniques by defining the ones with the highest frequency of implementation in each domain we predefined. During the selection process from the 4 selected databases, 2251 works were taken into consideration, of which 25 were the ones that were included in the review process through various filtering steps and exclusion criteria. Ongoing, we defined four main categories where we presented each paper individually by briefly explaining the underlying data, the proposed hybrid forecasting approach and the evaluation performance metrics such as root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). In a summary table, we highlight the most used hybrid methods for each domain, concluding which of the statistical and deep learning methods are mostly applied in the specified domains.
Volume: 14
Issue: 4
Page: 2601-2612
Publish at: 2025-08-01

Human sentiment analytics using multi model deep learning approach

10.11591/ijai.v14.i4.pp3241-3252
Anil Kumar Muthevi , Maganti Venkatesh , Pallavi Gaurav Adke , Rajashree Tukaram Gadhave , G L Narasamba Vanguri , Thiruveedula Srinivasulu
For assessing human beings, the measurement of willpower and human emotions plays an important role because human beings are emotional creatures. Emotional analysis, also known as sentiment analysis, is the process of using natural language processing (NLP) and machine learning to determine the emotions expressed in text, speech, or other forms of communication. However, critical emotional analysis is limited to human interactions only. Human emotional artificial intelligence or Human sentimental analytics, a sub domain of NLP seeks to improve this understanding. The Present study develops a model using multi model deep learning approach which is capable of efficiently understanding human emotions and their intentions, closely mirroring human cognition. By extending emotional analysis beyond the traditional limits, this model will collect broad ranging data to uncover clear and hidden emotional details. The primary objective of this paper is to build highly effective model which provides in-depth insights into human emotions, leading to logical conclusions depending on all available factors and reasons. The necessary input data for the current study will be collected from audio-visual media covering a vast range of audio and visual samples.
Volume: 14
Issue: 4
Page: 3241-3252
Publish at: 2025-08-01

Personalized virtual reality therapy for children with autism spectrum disorder

10.11591/ijai.v14.i4.pp3444-3451
Ahlam Belmaqrout , Btihal El Ghali , Najima Daoudi , Abdelhay Haqiq
The treatment of autism spectrum disorders (ASD) has often relied on broad therapeutic approaches that may not meet each individual's specific needs. This research highlights the importance of personalized therapy to address the unique sensory and emotional requirements of autistic children. We explore recent advances in therapeutic technologies, focusing on serious games and virtual reality (VR) as promising tools in this field. Our proposed solution is a VR application designed to provide a personalized, relaxing experience for children with autism. The application is tailored to accommodate individual preferences and sensory sensitivities, adjusting visual and auditory stimuli to reduce sensory overload and promote emotional regulation. This personalized approach aims to help children manage anxiety and stress more effectively.
Volume: 14
Issue: 4
Page: 3444-3451
Publish at: 2025-08-01

Fine-tuning bidirectional encoder representations from transformers for the X social media personality detection

10.11591/ijai.v14.i4.pp3395-3403
Selvi Fitria Khoerunnisa , Bayu Surarso , Retno Kusumaningrum
Understanding personality traits can help individuals reach their full potential and has applications in various fields such as recruitment, advertising, and marketing. A widely used tool for assessing personality is Myers-Briggs type indicator (MBTI). Recent advancements in technology have allowed for research on how personalities can change based on social media use. Previous research used machine learning methods, deep learning methods, until transformers-based method. However, these previous approaches must be revised to require extensive data and a high computational load. Although transformer-based methods like bidirectional encoder representations from transformers (BERT) excel at understanding context, it still has limitations in capturing word order and stylistic variations. Therefore, this study proposed integrating fine-tuning BERT with recurrent neural networks (RNNs) consisting of vanilla RNN, long short-term memory (LSTM), and gated recurrent unit (GRU). This study also uses a BERT base fully connected layer as a comparison. The results show that the BERT base fully connected layer approach strategy has the best evaluation results in class extraversion/introversion (E/I) of 0.562 and class feeling/thinking (F/T) of 0.538. then, the BERT+LSTM approach strategy has the highest accuracy for the intuition/sensing (N/S) class of 0.543 and judging/perceiving (J/P) of 0.532. 
Volume: 14
Issue: 4
Page: 3395-3403
Publish at: 2025-08-01

Efficient lung disease classification through luminescent feature selection using firefly algorithm

10.11591/ijai.v14.i4.pp3099-3108
Anjugam Shanmugavelu , Arul Leena Rose Peter Joseph
Over the past couple of decades, there has been a substantial increase in the prevalence of lung ailments, resulting in 3.5 million fatalities each year. This necessitates the adoption of a lung disease detection technology that is effective, trustworthy, and cost-effective. In this study, we propose an optimized convolutional neural network (CNN) model, used for multiclass categorization of lung ailments based on frontal chest X-rays. The classification includes four categories: COVID-19, viral pneumonia, lung opacity, and non-infectious normal group. We implemented the firefly algorithm to optimize the global efficiency of feature selection of the lung abnormality in the X-ray images of lung disease and COVID-19 to classify the input according to the target class. The proposed algorithm was tested for accuracy, precision, recall, and F1-score. The findings were validated using the transfer learning model VGG-16; the algorithm achieved a superior accuracy of 99.3% compared to that of other cutting-edge models such as Inceptionv3 and ResNet50.
Volume: 14
Issue: 4
Page: 3099-3108
Publish at: 2025-08-01

Improving the transfer learning for batik besurek textile motif classification

10.11591/ijai.v14.i4.pp3172-3181
Marissa Utami , Ermatita Ermatita , Abdiansah Abdiansah
This proposed research discussion is a new combination model for classifying batik besurek fabric from the implementation transfer learning with mixed contrast enhancement, activation function, and optimizer method. The size of the batik besurek fabric motif image as an input image is 250×250 with three channels consisting of red, green, and blue totaling five classes, namely kaligrafi, rafflesia, burung kuau, relung paku and rembulan. All images in the dataset will be divided into train data (1540 images), validate data (380 images), and test data (480 images) that are taken directly from the batik store in Bengkulu. The division method used is stratified random sampling to take all the data, shuffles it, and divides the data sets for each class. Based on the experiment results, ResNet50 obtained the best performance compared to MobileNetV2, InceptionV3, and VGG16, with a training accuracy of 99.60%, a validation accuracy of 97.44%, and a testing accuracy of 98.12%. In the improvement experiment phase, the ResNet50 model with Adam optimizer, rectified linear unit (ReLU) activation function and contrast limited adaptive histogram equalization (CLAHE) as the contrast enhancement method obtained the highest test accuracy (98.75%), showing that CLAHE was very effective in improving performance on batik besurek data.
Volume: 14
Issue: 4
Page: 3172-3181
Publish at: 2025-08-01

A comprehensive review of interpretable machine learning techniques for phishing attack detection

10.11591/ijai.v14.i4.pp3022-3032
Pankaj Ramchandra Chandre , Pallavi Bhujbal , Ashvini Jadhav , Bhagyashree Dinesh Shendkar , Aditi Wangikar , Rajneeshkaur Sachdeo
Phishing attacks remain a significant and evolving threat in the digital landscape, demanding continual advancements in detection methodologies. This paper emphasizes the importance of interpretable machine learning models to enhance transparency and trustworthiness in phishing detection systems. It begins with an overview of phishing attacks, their increasing sophistication, and the challenges faced by conventional detection techniques. A range of interpretable machine learning approaches, including rule-based models, decision trees, and additive models like Shapley additive explanations (SHAP), are surveyed. Their applicability in phishing detection is analyzed based on computational efficiency, prediction accuracy, and interpretability. The study also explores ways to integrate these methods into existing detection systems to enhance functionality and user experience. By providing insights into the decision-making processes of detection models, interpretable machine learning facilitates human supervision and intervention, strengthening overall system reliability. The paper concludes by outlining future research directions, such as improving the scalability, accuracy, and adaptability of interpretable models to detect emerging phishing techniques. Integrating these models with real-time threat intelligence and deep learning approaches could boost accuracy while preserving transparency. Additionally, user-centric explanations and human-in-the-loop systems may further enhance trust, usability, and resilience in phishing detection frameworks.
Volume: 14
Issue: 4
Page: 3022-3032
Publish at: 2025-08-01

Semi-automatic voice comparison approach using spiking neural network for forensics

10.11591/ijai.v14.i4.pp2689-2700
Kruthika Siddanakatte Gopalaiah , Trisiladevi Chandrakant Nagavi , Parashivamurthy Mahesha
This paper explores the application of a semi-automatic technique using spiking neural network (SNN) approach for forensic voice comparison (FVC), addressing the limitations of traditional methods that are time-consuming and subjective. By integrating machine learning with human expertise, the SNN, which mimics the brain’s processing of temporal information, is applied to analyze Australian English voice data in .flac format. The model leverages synaptic connection strengths modified by spike timing, allowing for flexible voice feature representation. Performance metrics, including confusion matrices and receiver operating characteristic (ROC) analysis, indicate the model’s accuracy of 94.21%, highlighting the effectiveness of the SNN-based approach for FVC.
Volume: 14
Issue: 4
Page: 2689-2700
Publish at: 2025-08-01

Optimizing citrus disease detection: a transferrable convolutional neural network model enhanced with the fruitfly optimization algorithm

10.11591/ijai.v14.i4.pp3201-3213
Anoop Ganadalu Lingaraju , Asha Mangala Shankaregowda , Babu Kumar Sathiyamurthy , Santhrupth Budanoor Channegowda , Shruti Jalapur , Chaitra Palahalli Chennakeshava
Fungal, bacterial, and viral diseases significantly threaten citrus production and quality worldwide, prompting producers to explore technological solutions to mitigate the financial impact of these diseases. Image analysis techniques have emerged as powerful tools for detecting citrus diseases by differentiating between healthy and diseased specimens through the extraction of discriminative features from input images. This paper introduces a valuable dataset comprising 953 color images of orange leaves from the species Citrus sinensis (L.) Osbeck, which serves to train, evaluate, and compare various algorithms aimed at identifying abnormalities in citrus fruits. The development of automated detection systems is crucial for reducing economic losses in citrus production, with this research focusing on twelve specific diseases and nutrient deficiencies. We propose a novel approach to citrus plant disease detection utilizing a hyper-parameter tuned transferrable convolutional neural network (TCNN) model, referred to as the enhanced fruitfly optimization algorithm (EFOA)-TCNN model. This model optimizes the parameters of TCNN using the EFOA and enhances architectural design by incorporating three convolutional layers alongside an energy layer instead of a traditional pooling layer. Experimental results demonstrate that the proposed EFOA-TCNN model outperforms existing state-of-the-art methods, achieving a sensitivity of 0.975 and an accuracy of 0.995.
Volume: 14
Issue: 4
Page: 3201-3213
Publish at: 2025-08-01

Artificial intelligence predictive modeling for educational indicators using data profiling techniques

10.11591/ijai.v14.i4.pp3063-3073
Soukaina Nai , Bahaa Eddine Elbaghazaoui , Amal Rifai , Abdelalim Sadiq
In Morocco, the escalating challenges in the education sector underscore the necessity for precise predictions and informed decision-making. Effective management of the education system depends on robust statistical data, which is crucial for guiding decisions, refining policies, and improving both the quality and accessibility of education. Reliable indicators are vital for ensuring efficiency, equity, and accuracy in educational planning and decision- making. Without dependable data, implementing effective policies, addressing the needs appropriately, and achieving positive outcomes becomes difficult. This paper aims to identify the optimal machine learning model for analyzing educational indicators by comparing a range of advanced models across a comprehensive set of metrics. The objective is to determine the most effective model for profiling relevant information and addressing predictive challenges with high accuracy.
Volume: 14
Issue: 4
Page: 3063-3073
Publish at: 2025-08-01

Broiler meats tenderness prediction using near infrared spectroscopy against non-linear predictive modelling

10.11591/ijai.v14.i4.pp2713-2723
Rashidah Ghazali , Herlina Abdul Rahim , Syahidah Nurani Zulkifli
Near infrared (NIR) spectroscopy is a non-invasive analytical technique known for its ability to assess the quality attributes of meat products. However, the linear models utilized, partial least square (PLS) and principal component regression (PCR) achieved unsatisfactory performances of meat physical attributes prediction. Hence, in this research, for its inherent advantages in modelling nonlinear system, artificial neural network (ANN) is augmented to the components of PCR and PLS. Through the augmentation, the principal component neural network (PCNN) and latent variable neural network (LVNN) models are developed. From the results obtained, it shows that PCNN and LVNN successfully surpassed their respective linear versions of PCR and PLS by 70% higher shear force prediction performances. The LVNN proved to achieve the best prediction in breast meat with root mean square error of prediction (RMSEP) of 0.0769 kg and coefficient of determination (RP2) of 0.8201 whilst for drumsticks, RMSEP=0.1494 kg and RP2=0.8606. NIR spectroscopy technology integrated with machine learning yields a promising non-invasive technique in predicting the shear force of intact raw broiler meat.
Volume: 14
Issue: 4
Page: 2713-2723
Publish at: 2025-08-01

Hybrid convolutional vision transformer for extrusion-based 3D food-printing defect classification

10.11591/ijai.v14.i4.pp3311-3323
Cholid Mawardi , Agus Buono , Karlisa Priandana , Herianto Herianto
Deep learning is generally used to perform remote monitoring of three-dimensional (3D) printing results, including extrusion-based 3D food printing. One of the widely used deep learning algorithms for defect detection in 3D printing is the convolutional neural network (CNN). However, the process requires high computational costs and a large dataset. This research proposes the Con4ViT model, a hybrid model that combines the strengths of vision transformer with the inherent feature extraction capabilities of CNN. The locally extracted features in the CNN were merged using the transformers’ global features with four transformer encoder blocks. The proposed model has a smaller number of parameters compared to other lightweight pre-trained deep learning models such as VGG16, VGG19, EfficientNetB2, InceptionV3, and ResNet50. Thus, the proposed model is simplified. Simulations were conducted to classify defect and non-defect images obtained from the printing results of a developed extrusion-based 3D food printing device. Simulation results showed that the model produced an accuracy of 95.43%, higher than the state-of-the-art techniques, i.e., VGG16, VGG19, MobileNetV2, EfficientNetB2, InceptionV3, and ResNet50, with accuracies of 77.88, 86.30, 82.95, 90.87, 84.62, and 93.83%, respectively. This research shows that the proposed Con4ViT model can be used for 3D food printing defect detection with high accuracy.
Volume: 14
Issue: 4
Page: 3311-3323
Publish at: 2025-08-01

Novel framework for downsizing the massive data in internet of things using artificial intelligence

10.11591/ijai.v14.i4.pp2613-2621
Salma Firdose , Shailendra Mishra
The increasing demands of large-scale network system towards data acquisition and control from multiple sources has led to the proliferated adoption of internet of things (IoT) that is further witnessed with massive generation of voluminous data. Review of literature showcases the scope and problems associated with data compression approaches towards massive scale of heterogeneous data management in IoT. Therefore, the proposed study addresses this problem by introducing a novel computational framework that is capable of downsizing the data by harnessing the potential problem-solving characteristic of artificial intelligence (AI). The scheme is presented in form of triple-layered architecture considering layer with IoT devices, fog layer, and distributed cloud storage layer. The mechanism of downsizing is carried out using deep learning approach to predict the probability of data to be downsized. The quantified outcome of study shows significant data downsizing performance with higher predictive accuracy.
Volume: 14
Issue: 4
Page: 2613-2621
Publish at: 2025-08-01

Enhancing crude palm oil quality detection using machine learning techniques

10.11591/ijai.v14.i4.pp2955-2963
Novianti Puspitasari , Ummul Hairah , Vina Zahrotun Kamila , Hamdani Hamdani , Anindita Septiarini , Amin Padmo Azam Masa
Indonesia, a leading nation in the palm oil industry, experienced a significant increase of 15.62% in crude palm oil (CPO) exports in 2020, effectively meeting the global need for vegetable oil and fat. Therefore, the subjective assessment of CPO quality, influenced by differences in human evaluations, may lead to inconsistencies, necessitating the adoption of machine learning methods. There are several categories of CPO, such as bad and excellent. Machine learning can determine the quality of CPO itself. This study utilizes two distinct categories to measure the quality of CPO. CPO quality data is collected and processed into pre-processing data, in classifying using several methods such as artificial neural network (ANN), k-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), naïve Bayes (NB), and C.45 using the cross-validation evaluation parameter. The best results are obtained by C.45 and DT with an accuracy of 99.98%.
Volume: 14
Issue: 4
Page: 2955-2963
Publish at: 2025-08-01
Show 43 of 1896

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration