I
A
E
S
I
n
t
e
r
n
at
io
n
al
Jou
r
n
al
of
A
r
t
if
ic
ia
l
I
n
t
e
ll
ig
e
n
c
e
(
I
J
-
AI
)
V
ol
.
14
, N
o.
4
,
A
ugus
t
20
25
, pp.
3022
~
3032
I
S
S
N
:
2252
-
8938
,
D
O
I
:
10.11591/
ij
a
i.
v
14
.i
4
.pp
3022
-
3032
3022
Jou
r
n
al
h
om
e
page
:
ht
tp
:
//
ij
ai
.
ia
e
s
c
or
e
.c
om
A
c
om
p
r
e
h
e
n
si
ve
r
e
vi
e
w
o
f
i
n
t
e
r
p
r
e
t
ab
l
e
m
ac
h
i
n
e
l
e
ar
n
i
n
g
t
e
c
h
n
i
q
u
e
s f
or
p
h
i
sh
i
n
g at
t
ac
k
d
e
t
e
c
t
i
on
P
an
k
aj
C
h
a
n
d
r
e
, P
al
la
vi
B
h
u
j
b
al
, A
s
h
vi
n
i
Jad
h
av
,
B
h
agyas
h
r
e
e
D
in
e
s
h
S
h
e
n
d
k
ar
, A
d
it
i
Wan
gi
k
ar
,
R
aj
n
e
e
s
h
k
au
r
S
ac
h
d
e
o
D
e
pa
r
t
m
e
nt
of
C
om
put
e
r
S
c
i
e
nc
e
a
nd E
ngi
ne
e
r
i
ng, M
I
T
S
c
hool
of
C
om
put
i
ng,
M
I
T
A
r
t
D
e
s
i
gn a
nd T
e
c
hnol
ogy U
ni
ve
r
s
i
t
y, P
une
, I
ndi
a
A
r
t
ic
le
I
n
f
o
A
B
S
T
R
A
C
T
A
r
ti
c
le
h
is
to
r
y
:
R
e
c
e
iv
e
d
A
pr
25
,
2024
R
e
vi
s
e
d
J
un
13
,
2025
A
c
c
e
pt
e
d
J
ul
10
,
2025
Phishing
attac
ks
remai
n
a
signific
ant
and
evolvin
g
threa
t
in
the
digital
landscape
,
demanding
continual
advance
ments
in
detection
methodo
logies.
This
paper
emphasizes
the
importance
of
interpretable
machine
learning
models
to
enhance
transparency
and
trustworthiness
in
phishing
de
tection
systems.
It
begins
with
an
overview
of
phishing
attacks,
their
incr
easing
sophistication,
and
the
challenges
faced
by
conventional
de
tection
techniques.
A
range
of
interpreta
ble
machine
learning
approac
hes,
inc
luding
rule
-
b
ased
models,
decision
trees,
and
additive
models
like
S
hapley
a
dditive
explanati
ons
(SHAP),
are
surveyed.
Their
applicabi
lity
in
phishi
ng
detection
is
analyzed
based
on
computational
efficiency,
prediction
accurac
y,
and
interpreta
bility. The study
also
explores
ways
to integra
te
these meth
o
ds into
existin
g
detection
systems
to
enhance
function
ality
and
user
experien
ce.
By
providing
insights
into
the
decision
-
making
processes
of
detection
models,
interpreta
ble
machine
learning
facilitate
s
human
supervision
a
nd
intervention
,
strengthenin
g
overall
system
reliability.
The
paper
con
cludes
by
outlining
future
research
directions,
such
as
improving
the
scal
ability,
accuracy,
and
adaptabil
ity
of
interpret
able
models
to
detect
em
erging
phishing
techniques.
Integrating
these
models
with
real
-
time
threat
intelligence
and
deep
learning
approac
hes
could
boost
accura
cy
while
preserving
transparency.
Additionally,
user
-
centric
explanati
ons
and
h
uman
-
in
-
the
-
loop
systems
may
further
enhance
trust,
usability,
and
resilie
nce
in
phishing detection frameworks.
K
e
y
w
o
r
d
s
:
C
ybe
r
s
e
c
ur
it
y
D
e
c
is
io
n
-
m
a
ki
ng pr
oc
e
s
s
e
s
D
e
te
c
ti
on me
th
odol
ogi
e
s
I
nt
e
r
pr
e
ta
bl
e
m
a
c
hi
ne
l
e
a
r
ni
ng
P
hi
s
hi
ng a
tt
a
c
ks
This is an
open
acce
ss artic
le unde
r the
CC BY
-
SA
license.
C
or
r
e
s
pon
di
n
g A
u
th
or
:
P
a
nka
j
C
ha
ndr
e
D
e
pa
r
tm
e
nt
of
C
om
put
e
r
S
c
ie
nc
e
a
nd
E
ngi
ne
e
r
in
g, M
I
T
S
c
hoo
l
of
C
om
put
in
g
M
I
T
A
r
t
D
e
s
ig
n a
nd
T
e
c
hnol
ogy Unive
r
s
it
y
L
oni
K
a
lb
hor
,
P
une
,
I
ndi
a
E
m
a
il
:
pa
nka
jc
ha
ndr
e
30@
gm
a
il
.c
om
1.
I
N
T
R
O
D
U
C
T
I
O
N
P
hi
s
hi
ng
a
tt
a
c
ks
po
s
e
a
s
ig
ni
f
ic
a
nt
th
r
e
a
t
to
c
ybe
r
s
e
c
ur
it
y,
ta
r
ge
ti
ng
in
di
vi
dua
ls
,
or
ga
ni
z
a
ti
ons
,
a
nd
c
r
it
ic
a
l
in
f
r
a
s
tr
uc
tu
r
e
s
w
or
ld
w
id
e
. T
he
s
e
a
tt
a
c
ks
us
e
de
c
e
pt
iv
e
t
e
c
hni
que
s
to
f
ool
us
e
r
s
in
to
di
s
c
lo
s
in
g
pr
iv
a
te
in
f
or
m
a
ti
on,
in
c
lu
di
ng
ba
nk
a
c
c
ount
in
f
or
m
a
ti
on
a
nd
lo
gi
n
c
r
e
de
nt
ia
ls
[
1]
.
A
lt
hough
tr
a
di
ti
ona
l
m
a
c
hi
ne
le
a
r
ni
ng
te
c
hni
que
s
h
a
ve
be
e
n
us
e
d
to
de
te
c
t
phi
s
hi
ng
a
tt
e
m
pt
s
,
th
e
ir
in
te
r
pr
e
ta
bi
li
ty
a
nd
tr
a
ns
pa
r
e
nc
y
i
s
s
ue
s
f
r
e
que
nt
ly
r
e
s
tr
ic
t
th
e
ir
e
f
f
ic
a
c
y
[
2]
.
T
he
in
c
r
e
a
s
in
g
c
om
pl
e
xi
ty
of
phi
s
hi
ng
te
c
hni
que
s
is
dr
iv
in
g
th
e
de
m
a
nd
f
or
s
ophi
s
ti
c
a
te
d
de
te
c
ti
on
m
e
c
ha
ni
s
m
s
th
a
t
c
a
n
id
e
nt
if
y
s
ubt
le
pa
tt
e
r
ns
of
a
tt
a
c
k
[
3]
.
A
s
a
r
e
s
ul
t,
a
ppr
oa
c
he
s
f
or
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
ha
ve
s
ur
f
a
c
e
d
a
s
vi
a
bl
e
r
e
m
e
di
e
s
,
pr
ovi
di
ng
tr
a
ns
pa
r
e
nt
m
ode
l
s
th
a
t
pr
ovi
de
l
ig
ht
on t
he
de
c
is
io
n
-
m
a
ki
ng pr
oc
e
s
s
[
4]
, [
5]
. T
hi
s
s
tu
dy pr
ovi
de
s
a
t
hor
ough a
s
s
e
s
s
m
e
nt
a
nd a
n
a
ly
s
is
of
c
ur
r
e
nt
m
e
th
ods
in
or
de
r
to
in
ve
s
ti
ga
te
th
e
f
unc
ti
on
of
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
in
phi
s
hi
ng
a
tt
a
c
k
Evaluation Warning : The document was created with Spire.PDF for Python.
I
nt
J
A
r
ti
f
I
nt
e
ll
I
S
S
N
:
2252
-
8938
A
c
om
pr
e
he
ns
iv
e
r
e
v
ie
w
of
i
nt
e
r
p
r
e
ta
bl
e
m
ac
hi
n
e
l
e
ar
ni
ng t
e
c
h
ni
que
s
f
or
phi
s
hi
ng
…
(
P
ank
aj
C
handr
e
)
3023
de
te
c
ti
on
[
6]
.
T
he
in
tr
oduc
ti
on
la
y
s
f
or
th
th
e
goa
ls
a
nd
f
r
a
m
e
w
or
k
of
th
is
r
e
s
e
a
r
c
h, w
hi
c
h
pr
e
pa
r
e
s
th
e
r
e
a
d
e
r
f
or
a
th
o
r
ough
a
na
ly
s
is
of
in
te
r
p
r
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
te
c
hni
que
s
f
or
th
w
a
r
ti
ng
phi
s
hi
ng
a
tt
a
c
ks
.
P
hi
s
hi
ng
a
tt
a
c
ks
c
ont
in
ue
to
be
a
m
a
jo
r
c
ybe
r
s
e
c
ur
it
y
c
onc
e
r
n,
w
it
h
m
il
li
ons
of
in
c
id
e
nt
s
r
e
por
te
d
gl
oba
ll
y
e
a
c
h
ye
a
r
.
A
c
c
or
di
ng
to
in
dus
tr
y
r
e
por
ts
,
phi
s
hi
ng
a
tt
a
c
ks
a
c
c
ount
e
d
f
or
ove
r
36%
of
da
ta
br
e
a
c
he
s
in
r
e
c
e
nt
ye
a
r
s
,
c
a
us
in
g
bi
ll
io
ns
of
dol
la
r
s
in
f
in
a
nc
ia
l
lo
s
s
e
s
f
or
in
di
vi
dua
l
s
,
bus
in
e
s
s
e
s
,
a
nd
or
ga
ni
z
a
ti
ons
.
T
h
e
gr
ow
in
g
s
ophi
s
ti
c
a
ti
on
of
phi
s
hi
ng
te
c
hni
que
s
,
s
uc
h
a
s
s
pe
a
r
phi
s
hi
ng
a
nd
a
dva
nc
e
d
s
oc
ia
l
e
ngi
ne
e
r
in
g
ta
c
ti
c
s
,
ha
s
m
a
de
tr
a
di
ti
ona
l
de
te
c
ti
on
a
ppr
oa
c
he
s
le
s
s
e
f
f
e
c
ti
ve
,
ne
c
e
s
s
i
ta
ti
ng
th
e
de
ve
lo
pm
e
nt
of
m
or
e
r
obus
t
a
nd
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
l
e
a
r
ni
ng mode
ls
.
P
hi
s
hi
ng
a
tt
a
c
ks
a
r
e
di
s
hone
s
t
ta
c
ti
c
s
e
m
pl
oye
d
by
ba
d
a
c
to
r
s
to
f
ool
pe
opl
e
in
to
di
vul
gi
ng
pr
iv
a
te
in
f
or
m
a
ti
on,
li
ke
pa
s
s
w
or
ds
,
ba
nk
a
c
c
ount
in
f
or
m
a
ti
on,
or
pe
r
s
ona
l
in
f
or
m
a
ti
on
[
7]
.
B
e
c
a
us
e
th
e
s
e
a
s
s
a
ul
t
s
pr
e
y
on
hum
a
n
f
la
w
s
r
a
th
e
r
th
a
n
te
c
hni
c
a
l
one
s
,
th
e
y
r
e
pr
e
s
e
n
t
s
e
r
io
us
c
ha
ll
e
nge
s
to
c
ybe
r
s
e
c
ur
it
y
[
8]
,
[
9]
.
D
e
ve
lo
pi
ng s
tr
ong de
f
e
nc
e
s
a
ga
in
s
t
phi
s
hi
ng a
tt
a
c
ks
r
e
qui
r
e
s
a
n unde
r
s
ta
ndi
ng of
t
he
ir
na
tu
r
e
a
nd t
e
c
hni
que
s
.
I
nt
e
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
te
c
hni
que
s
pl
a
y
a
vi
ta
l
r
ol
e
in
e
nha
nc
in
g
th
e
tr
a
ns
pa
r
e
nc
y
a
nd
e
xpl
a
in
a
bi
li
ty
of
phi
s
hi
ng
de
te
c
ti
on
s
y
s
te
m
s
[
10]
.
I
t
be
c
om
e
s
m
or
e
di
f
f
ic
ul
t
to
c
om
pr
e
he
nd
how
s
ophi
s
ti
c
a
te
d
m
a
c
hi
n
e
le
a
r
ni
ng
m
ode
ls
m
a
ke
de
c
is
io
ns
a
s
phi
s
hi
ng
a
s
s
a
ul
ts
c
ont
in
u
e
to
a
dva
nc
e
in
s
ophi
s
ti
c
a
ti
on
[
11]
.
B
y
us
in
g
in
te
r
pr
e
ta
bl
e
m
e
th
odol
ogi
e
s
,
s
e
c
ur
it
y
a
n
a
ly
s
ts
c
a
n
be
tt
e
r
id
e
nt
if
y
a
nd
m
it
ig
a
te
phi
s
hi
ng
a
tt
a
c
ks
by
be
in
g
a
bl
e
to
tr
us
t
a
nd
in
te
r
pr
e
t
th
e
pr
e
di
c
ti
ons
pr
ovi
de
d
by
th
e
s
e
m
ode
ls
.
T
he
pr
im
a
r
y
obj
e
c
ti
ve
of
th
is
pa
pe
r
is
to
pr
ovi
de
a
c
om
pr
e
he
n
s
iv
e
r
e
vi
e
w
a
nd
a
na
ly
s
i
s
of
in
te
r
pr
e
ta
b
le
m
a
c
hi
ne
le
a
r
ni
ng
te
c
hni
que
s
f
or
phi
s
hi
ng
a
tt
a
c
k
de
te
c
ti
on.
I
t
s
e
e
ks
to
e
xa
m
in
e
th
e
s
ta
te
of
th
e
f
ie
ld
,
pi
npoi
nt
im
por
ta
nt
a
ppr
oa
c
he
s
,
a
nd
a
s
s
e
s
s
how
w
e
ll
th
e
y
w
or
k
to
s
ol
ve
th
e
pr
obl
e
m
s
c
a
us
e
d
by
phi
s
hi
ng
s
c
a
m
s
.
T
he
p
a
pe
r
is
or
ga
ni
s
e
d
s
o
th
a
t
a
n
ove
r
vi
e
w
of
phi
s
hi
ng
a
s
s
a
ul
ts
i
s
gi
ve
n
f
ir
s
t,
a
nd
th
e
n
th
e
s
ig
ni
f
ic
a
nc
e
of
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
a
ppr
oa
c
he
s
is
di
s
c
us
s
e
d.
T
o
a
s
s
i
s
t
r
e
a
de
r
s
in
unde
r
s
ta
ndi
ng
th
e
f
ol
lo
w
in
g
s
e
c
ti
ons
,
it
c
onc
lu
de
s
by
out
li
ni
ng
th
e
pr
e
c
is
e
goa
ls
a
nd pa
r
a
m
e
te
r
s
of
t
he
w
or
k.
2.
B
A
C
K
G
R
O
U
N
D
A
N
D
R
E
L
A
T
E
D
WORK
2.
1.
E
xp
la
n
at
io
n
of
p
h
is
h
in
g at
t
ac
k
s
, t
h
e
ir
t
yp
e
s
, an
d
c
om
m
on
c
h
ar
ac
t
e
r
is
t
ic
s
T
he
s
e
c
ti
on
2.1
de
lv
e
s
in
to
th
e
in
tr
ic
a
c
ie
s
of
phi
s
hi
ng
a
tt
a
c
ks
, e
nc
om
pa
s
s
in
g
th
e
ir
va
r
io
us
ty
pe
s
a
nd
c
om
m
on
c
ha
r
a
c
te
r
is
ti
c
s
.
C
ybe
r
c
r
im
in
a
ls
u
s
e
phi
s
hi
ng
a
tt
a
c
k
s
a
s
a
ho
s
ti
le
ta
c
ti
c
to
tr
ic
k
pe
opl
e
in
to
di
s
c
lo
s
in
g
pr
iv
a
te
in
f
or
m
a
ti
on
li
ke
ba
nk
a
c
c
ount
in
f
or
m
a
ti
on,
lo
gi
n
pa
s
s
w
or
ds
,
or
pe
r
s
ona
l
in
f
o
r
m
a
ti
on.
T
hi
s
s
e
c
ti
on
e
xpl
a
in
s
th
e
m
a
ny
ty
pe
s
of
phi
s
hi
ng
a
s
s
a
ul
ts
,
s
uc
h
a
s
s
p
e
a
r
phi
s
hi
ng,
e
m
a
il
phi
s
hi
ng,
a
nd
pha
r
m
in
g,
w
hi
c
h
a
r
e
de
s
ig
ne
d
to
ta
k
e
a
dva
nt
a
g
e
of
s
e
c
ur
it
y
s
ys
te
m
f
la
w
s
or
hum
a
n
w
e
a
kne
s
s
e
s
.
A
ddi
ti
ona
ll
y,
th
e
s
e
c
ti
on
de
s
c
r
ib
e
s
th
e
c
ha
r
a
c
te
r
is
ti
c
s
th
a
t
s
e
t
phi
s
hi
ng
a
s
s
a
ul
ts
a
pa
r
t,
e
m
pha
s
is
in
g
th
e
ir
m
a
ni
pul
a
ti
ve
s
tr
a
te
gi
e
s
a
nd
de
c
e
it
f
ul
na
tu
r
e
.
T
o
a
voi
d
di
s
c
ove
r
y,
th
e
s
e
a
tt
a
c
ks
f
r
e
que
nt
ly
us
e
s
oc
ia
l
e
ngi
ne
e
r
in
g
te
c
hni
que
s
to
e
nt
ic
e
gul
li
bl
e
vi
c
ti
m
s
w
it
h
c
a
pt
iv
a
ti
ng
s
to
r
ie
s
or
pr
e
s
s
in
g
r
e
que
s
ts
w
hi
le
im
it
a
ti
ng
tr
us
twor
th
y
c
om
m
un
ic
a
ti
on
c
ha
nne
ls
.
F
ur
th
e
r
m
or
e
,
r
e
d
f
la
gs
s
uc
h
a
s
dubi
ous
uni
f
or
m
r
e
s
our
c
e
lo
c
a
to
r
s
(
U
R
L
s
)
,
phone
y
w
e
bs
it
e
s
,
or
f
a
br
ic
a
te
d
s
e
nde
r
id
e
nt
it
ie
s
a
r
e
of
te
n
p
r
e
s
e
nt
in
phi
s
hi
ng
a
tt
e
m
pt
s
a
nd
a
r
e
c
r
uc
ia
l
m
a
r
ke
r
s
f
or
bo
th
de
te
c
ti
on
a
nd
m
it
ig
a
ti
on
pr
oc
e
dur
e
s
.
T
hr
ough
a
n
e
xt
e
ns
iv
e
e
xpl
a
na
ti
on
of
th
e
s
ubt
le
ti
e
s
of
phi
s
hi
ng
a
s
s
a
ul
ts
,
th
e
ir
ty
pol
ogi
e
s
,
a
nd
di
s
ti
ngui
s
hi
ng
f
e
a
tu
r
e
s
,
th
is
pa
r
t
pr
ovi
de
s
a
s
ol
id
ba
s
is
f
or
c
om
pr
e
he
ndi
ng
th
e
a
lwa
y
s
c
ha
ngi
ng
r
e
a
lm
of
c
ybe
r
da
nge
r
s
.
T
a
bl
e
1
pr
ovi
de
s
a
s
tr
uc
t
ur
e
d
ove
r
vi
e
w
of
di
f
f
e
r
e
nt
ty
pe
s
of
phi
s
hi
ng
a
tt
a
c
ks
,
th
e
ir
d
e
s
c
r
ip
ti
ons
,
a
nd
c
om
m
on
c
ha
r
a
c
te
r
is
ti
c
s
,
w
hi
c
h
c
a
n
a
id
in
unde
r
s
ta
ndi
ng
th
e
di
ve
r
s
e
m
e
th
ods
e
m
pl
oye
d by a
tt
a
c
ke
r
s
t
o de
c
e
iv
e
uns
u
s
pe
c
ti
ng vic
ti
m
s
.
T
a
bl
e
1.
S
um
m
a
r
y of
phi
s
hi
ng a
tt
a
c
ks
, t
he
ir
t
ype
s
,
a
nd c
om
m
o
n c
ha
r
a
c
te
r
is
ti
c
s
P
hi
s
hi
ng
a
t
t
a
c
k t
ype
D
e
s
c
r
i
pt
i
on
C
om
m
on
c
ha
r
a
c
t
e
r
i
s
t
i
c
s
E
m
a
i
l
p
hi
s
hi
ng
I
nvol
ve
s
s
e
ndi
ng
de
c
e
pt
i
ve
e
m
a
i
l
s
t
o
us
e
r
s
,
t
ypi
c
a
l
l
y
i
m
pe
r
s
ona
t
i
ng
l
e
gi
t
i
m
a
t
e
e
nt
i
t
i
e
s
s
uc
h
a
s
ba
nks
or
c
om
pa
ni
e
s
,
t
o
t
r
i
c
k
t
he
m
i
nt
o
di
vul
gi
ng
s
e
n
s
i
t
i
ve
i
nf
or
m
a
t
i
on or
pe
r
f
or
m
i
ng ha
r
m
f
ul
a
c
t
i
ons
.
S
poof
e
d
s
e
nde
r
a
ddr
e
s
s
e
s
,
ur
ge
nt
or
a
l
a
r
m
i
ng
m
e
s
s
a
ge
s
,
r
e
que
s
t
s
f
or
pe
r
s
ona
l
i
nf
or
m
a
t
i
on
,
l
i
nks
t
o f
a
ke
l
ogi
n pa
ge
s
S
pe
a
r
p
hi
s
hi
ng
A
t
a
r
ge
t
e
d
f
or
m
of
phi
s
hi
ng
w
he
r
e
a
t
t
a
c
ke
r
s
c
us
t
om
i
z
e
t
he
i
r
m
e
s
s
a
ge
s
f
or
s
pe
c
i
f
i
c
i
ndi
vi
dua
l
s
or
or
ga
ni
z
a
t
i
ons
,
of
t
e
n
us
i
ng
i
nf
o
r
m
a
t
i
on
ga
t
he
r
e
d
f
r
om
s
oc
i
a
l
m
e
di
a
or
ot
he
r
s
our
c
e
s
t
o
i
nc
r
e
a
s
e
c
r
e
di
bi
l
i
t
y
a
nd e
f
f
e
c
t
i
ve
ne
s
s
.
P
e
r
s
ona
l
i
z
e
d
c
ont
e
nt
,
c
ont
e
xt
ua
l
l
y
r
e
l
e
va
nt
i
nf
or
m
a
t
i
on
,
i
m
pe
r
s
ona
t
i
on
of
t
r
us
t
e
d
c
ont
a
c
t
s
,
e
nha
nc
e
d s
oc
i
a
l
e
ngi
ne
e
r
i
ng t
a
c
t
i
c
s
W
ha
l
i
ng
A
s
ubt
ype
of
s
p
e
a
r
phi
s
hi
ng
t
ha
t
t
a
r
ge
t
s
hi
gh
-
pr
of
i
l
e
i
ndi
vi
dua
l
s
w
i
t
hi
n
or
ga
ni
z
a
t
i
ons
,
s
uc
h
a
s
e
xe
c
ut
i
ve
s
or
s
e
ni
or
m
a
na
ge
m
e
nt
,
w
i
t
h
t
he
goa
l
o
f
obt
a
i
ni
ng
s
e
ns
i
t
i
ve
c
or
por
a
t
e
da
t
a
or
f
i
na
nc
i
a
l
a
s
s
e
t
s
.
I
m
pe
r
s
ona
t
i
on
of
s
e
ni
or
e
xe
c
ut
i
ve
s
,
r
e
que
s
t
s
f
or
c
onf
i
de
nt
i
a
l
bus
i
ne
s
s
i
nf
or
m
a
t
i
on
U
s
e
of
e
xe
c
ut
i
ve
t
i
t
l
e
s
or
a
ut
hor
i
t
y
V
i
s
hi
ng
U
t
i
l
i
z
e
s
voi
c
e
c
om
m
uni
c
a
t
i
on
c
ha
nne
l
s
,
s
uc
h
a
s
phone
c
a
l
l
s
or
V
oI
P
s
e
r
vi
c
e
s
,
t
o
de
c
e
i
ve
i
ndi
vi
dua
l
s
i
nt
o
di
s
c
l
os
i
ng
s
e
ns
i
t
i
ve
i
nf
or
m
a
t
i
on
or
pe
r
f
or
m
i
ng
a
c
t
i
ons
unde
r
f
a
l
s
e
pr
e
t
e
ns
e
s
.
A
ut
om
a
t
e
d
voi
c
e
m
e
s
s
a
g
e
s
or
r
e
c
or
di
ngs
,
c
a
l
l
e
r
i
d
s
poof
i
ng
,
ur
ge
nt
or
t
hr
e
a
t
e
ni
ng
t
one
,
r
e
que
s
t
s
f
or
ve
r
i
f
i
c
a
t
i
on c
ode
s
or
pe
r
s
ona
l
de
t
a
i
l
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
S
N
:
2252
-
8938
I
nt
J
A
r
ti
f
I
nt
e
ll
,
V
ol
.
14
, N
o.
4
,
A
ugus
t
20
25
:
3022
-
3032
3024
2.2
.
R
e
vi
e
w
of
e
xi
s
t
in
g l
it
e
r
at
u
r
e
on
p
h
is
h
in
g at
t
ac
k
d
e
t
e
c
t
i
on
m
e
t
h
od
s
M
ol
a
y
[
12]
pr
opos
e
a
nove
l
te
c
hni
que
f
or
e
f
f
or
tl
e
s
s
ly
id
e
nt
if
yi
ng
phi
s
hi
ng
w
e
bs
it
e
s
on
th
e
c
li
e
nt
s
id
e
th
r
ough
a
r
e
de
s
ig
ne
d
br
ow
s
e
r
a
r
c
hi
te
c
tu
r
e
c
a
ll
e
d
th
e
e
m
be
dde
d
phi
s
hi
ng
d
e
te
c
ti
on
br
ow
s
e
r
(
E
P
D
B
)
.
U
s
in
g
m
e
r
e
ly
th
e
U
R
L
,
w
e
e
xt
r
a
c
t
30
di
s
ti
nc
t
f
e
a
tu
r
e
s
of
a
w
e
bs
it
e
us
in
g
a
r
ul
e
-
of
-
e
xt
r
a
c
ti
on
f
r
a
m
e
w
or
k.
T
he
s
e
a
tt
r
ib
ut
e
s
a
r
e
th
e
n
us
e
d
by
a
r
a
ndom
f
or
e
s
t
c
la
s
s
if
ic
a
ti
on
m
a
c
hi
ne
le
a
r
ni
ng
m
ode
l
to
d
e
te
r
m
in
e
th
e
va
li
di
ty
of
t
he
w
e
bs
it
e
. T
he
goa
l
of
t
hi
s
c
li
e
nt
-
s
id
e
s
tr
a
te
gy i
s
t
o i
m
pr
ove
upon the
w
e
a
kne
s
s
e
s
s
e
e
n i
n c
ur
r
e
nt
a
nt
i
-
phi
s
hi
ng
m
e
th
ods
.
W
it
h
th
e
a
ddi
ti
on
of
a
s
p
e
c
if
ic
s
e
c
ti
on
f
or
in
-
th
e
-
m
om
e
nt
phi
s
hi
ng
de
te
c
ti
on
a
c
ti
vi
ti
e
s
,
th
e
E
P
D
B
im
pr
ove
s
s
e
c
ur
it
y
w
it
hout
c
om
pr
om
is
in
g
th
e
c
ur
r
e
nt
us
e
r
e
xpe
r
ie
nc
e
.
B
y
us
in
g
pr
ot
ot
ype
s
,
w
e
c
a
n
id
e
nt
if
y
phi
s
hi
ng
w
e
bs
it
e
s
w
it
h
a
n
a
s
to
und
in
g
99.36%
a
c
c
ur
a
c
y
r
a
te
,
gi
vi
ng
us
e
r
s
of
th
e
in
te
r
ne
t
th
e
hi
ghe
s
t
le
ve
l
of
pr
ot
e
c
ti
on.
M
ohi
th
e
t
al
.
[
13]
pr
e
s
e
nt
s
a
nove
l
a
nt
i
-
phi
s
hi
ng
s
tr
a
te
gy
th
a
t
le
ve
r
a
ge
s
hybr
id
f
e
a
tu
r
e
s
e
xt
r
a
c
te
d
f
r
om
U
R
L
a
nd
hype
r
li
nk
in
f
or
m
a
ti
on
to
de
t
e
c
t
phi
s
hi
ng
w
e
b
s
it
e
s
w
it
hout
r
e
ly
in
g
on
th
ir
d
-
pa
r
ty
s
y
s
te
m
s
.
C
onve
nt
io
na
l
a
nt
i
-
phi
s
hi
ng
te
c
hni
que
s
,
in
c
lu
di
ng
w
hi
te
li
s
ti
ng
or
bl
a
c
kl
is
ti
ng,
ha
ve
tr
oubl
e
e
f
f
ic
ie
nt
l
y
id
e
nt
if
yi
ng
ne
w
dom
a
in
s
or
z
e
r
o
-
hour
phi
s
hi
ng
a
tt
e
m
pt
s
.
B
y
c
onc
e
nt
r
a
ti
ng
s
ol
e
ly
on
c
li
e
nt
-
s
id
e
f
e
a
tu
r
e
s
,
th
e
s
ugge
s
te
d
m
e
th
od
ove
r
c
om
e
s
th
e
s
e
di
f
f
ic
ul
ti
e
s
a
nd
a
ll
ow
s
r
e
a
l
-
ti
m
e
de
te
c
ti
on
w
it
hout
th
e
ne
e
d
f
or
in
tr
ic
a
te
de
pe
nde
nc
ie
s
.
U
ti
li
s
in
g
th
e
e
xt
r
e
m
e
gr
a
di
e
nt
boos
ti
ng
(
X
G
B
oos
t
)
m
e
th
odol
ogy,
e
xpe
r
im
e
nt
a
l
f
in
di
ngs
s
how
th
a
t
th
e
s
ugge
s
te
d
m
e
th
od
is
e
f
f
e
c
ti
ve
,
r
e
a
c
hi
ng
a
hi
gh
d
e
te
c
ti
o
n
a
c
c
ur
a
c
y
of
99.17%
.
T
o
a
id
in
tr
ia
ls
,
a
ne
w
da
ta
s
e
t
is
a
ls
o
c
r
e
a
te
d,
de
m
ons
tr
a
ti
ng
th
e
u
s
e
f
ul
ne
s
s
of
th
e
s
ug
ge
s
te
d
s
tr
a
te
gy
in
s
tr
e
ngt
he
ni
ng
c
ybe
r
s
e
c
ur
it
y
de
f
e
nc
e
s
a
g
a
in
s
t
phi
s
hi
ng a
tt
a
c
ks
.
G
upt
ta
e
t
al
.
[
14]
a
dd
r
e
s
s
e
s
th
e
p
e
r
s
is
te
nt
c
h
a
ll
e
nge
of
ph
is
hi
ng
e
m
a
il
de
te
c
ti
on
by
a
ppl
yi
ng
knowle
dge
di
s
c
ove
r
y pr
in
c
ip
le
s
a
nd ma
c
hi
ne
l
e
a
r
ni
ng t
e
c
hni
que
s
. I
t
a
s
s
e
s
s
e
s
s
ix
m
a
c
hi
ne
l
e
a
r
ni
ng t
e
c
hni
que
s
us
in
g
f
e
a
tu
r
e
s
th
a
t
ha
ve
be
e
n
c
a
r
e
f
ul
ly
c
hos
e
n,
a
nd
it
a
dds
two
ne
w
f
e
a
tu
r
e
s
to
th
e
body
of
c
ur
r
e
nt
li
te
r
a
tu
r
e
.
T
he
s
tu
dy
obt
a
in
s
e
xc
e
pt
io
na
ll
y
lo
w
f
a
ls
e
pos
it
iv
e
a
nd
ne
ga
ti
v
e
r
a
te
s
by
th
or
ough
a
na
ly
s
is
,
w
it
h
n
a
ïv
e
B
a
ye
s
de
m
ons
tr
a
ti
ng
th
e
lo
w
e
s
t
tr
ue
pos
it
iv
e
r
a
te
.
N
ot
a
bl
y,
w
it
h
a
hi
gh
a
c
c
ur
a
c
y
of
99.4%
f
or
ph
is
hi
ng
de
te
c
ti
on,
ne
ur
a
l
ne
twor
ks
a
pp
e
a
r
a
s
th
e
m
o
s
t
pr
om
is
in
g
m
e
th
od.
A
ll
t
hi
ngs
c
ons
id
e
r
e
d,
th
e
s
tu
dy
e
m
pha
s
is
e
s
how
m
a
c
hi
ne
le
a
r
ni
ng
m
a
y
im
pr
ove
th
e
id
e
nt
i
f
ic
a
ti
on
of
phi
s
hi
ng
e
m
a
il
s
a
nd
poi
nt
s
out
a
r
e
a
s
th
a
t
ne
e
d
m
or
e
r
e
s
e
a
r
c
h a
nd c
yb
e
r
s
e
c
ur
it
y m
e
a
s
ur
e
i
m
pr
ove
m
e
nt
.
R
e
s
e
a
r
c
h
by
P
a
li
a
th
e
t
al
.
[
15]
,
in
r
e
s
pons
e
to
th
e
e
s
c
a
la
ti
ng
th
r
e
a
t
of
phi
s
hi
ng
a
tt
a
c
ks
ta
r
ge
ti
ng
in
te
r
ne
t
-
c
onne
c
te
d
de
vi
c
e
s
,
r
e
s
e
a
r
c
he
r
s
ha
ve
tu
r
ne
d
to
m
a
c
hi
ne
le
a
r
ni
ng
a
s
a
pot
e
nt
ia
l
s
ol
ut
io
n.
N
e
ve
r
th
e
le
s
s
,
pr
io
r
m
e
th
ods
s
om
e
ti
m
e
s
de
pe
nde
d
on
num
e
r
ous
c
ha
r
a
c
te
r
is
ti
c
s
,
m
a
ki
ng
th
e
m
unf
e
a
s
ib
le
f
or
de
vi
c
e
s
w
it
h
li
m
it
e
d
r
e
s
our
c
e
s
.
A
nove
l
m
e
th
od
f
or
de
te
c
ti
ng
phi
s
hi
ng
ha
s
be
e
n
de
vi
s
e
d
to
ta
c
kl
e
th
is
di
f
f
ic
ul
ty
,
ne
c
e
s
s
it
a
ti
ng
ju
s
t
ni
ne
li
ngui
s
ti
c
c
h
a
r
a
c
te
r
is
ti
c
s
f
or
s
uc
c
e
s
s
f
ul
id
e
nt
if
ic
a
ti
on.
U
ti
li
s
in
g
th
e
I
S
C
X
U
R
L
-
2016
da
ta
s
e
t,
w
hi
c
h
ha
s
m
or
e
th
a
n
11,000
e
xa
m
pl
e
s
of
a
ut
he
nt
ic
a
nd
f
r
a
udul
e
nt
U
R
L
s
,
th
e
m
e
th
odol
ogy
w
a
s
e
xa
m
in
e
d
us
in
g
m
ul
ti
pl
e
m
a
c
hi
ne
le
a
r
ni
ng
c
la
s
s
if
ie
r
s
.
T
h
e
r
a
ndom
f
or
e
s
t
a
lg
or
it
hm
pr
oduc
e
d
th
e
be
s
t
a
c
c
ur
a
c
y
of
99.57%
,
w
hi
c
h
is
im
pr
e
s
s
iv
e
a
nd
s
how
s
how
s
uc
c
e
s
s
f
ul
th
is
s
im
pl
if
ie
d
m
e
th
od
is
in
th
w
a
r
ti
ng
phi
s
hi
ng a
tt
a
c
ks
.
W
hi
le
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
m
ode
ls
of
f
e
r
s
ig
ni
f
ic
a
nt
a
dva
nt
a
ge
s
in
tr
a
ns
pa
r
e
nc
y
a
nd
tr
us
twor
th
in
e
s
s
,
th
e
ir
im
pl
e
m
e
nt
a
ti
on
in
phi
s
hi
ng
a
tt
a
c
k
de
te
c
ti
on
pr
e
s
e
nt
s
s
e
v
e
r
a
l
c
ha
ll
e
ng
e
s
.
O
n
e
of
th
e
ke
y
tr
a
de
-
of
f
s
in
c
ybe
r
s
e
c
ur
it
y
a
ppl
ic
a
ti
ons
is
be
twe
e
n
m
ode
l
in
te
r
pr
e
ta
bi
li
ty
a
nd
a
c
c
ur
a
c
y.
T
r
a
di
ti
ona
l
de
e
p
le
a
r
ni
ng mode
ls
, s
uc
h a
s
ne
ur
a
l
ne
twor
ks
, of
te
n a
c
hi
e
v
e
hi
gh de
te
c
ti
on r
a
te
s
but
l
a
c
k e
xpl
a
in
a
bi
li
ty
, m
a
ki
ng i
t
di
f
f
ic
ul
t
f
o
r
s
e
c
ur
it
y
a
na
ly
s
ts
to
tr
us
t
th
e
ir
de
c
is
io
ns
.
O
n
th
e
ot
he
r
ha
nd,
in
te
r
pr
e
ta
bl
e
m
ode
ls
li
ke
de
c
is
io
n
tr
e
e
s
a
nd
r
ul
e
-
ba
s
e
d
s
ys
te
m
s
pr
ovi
de
c
le
a
r
e
r
e
xpl
a
n
a
ti
ons
but
m
a
y
s
a
c
r
if
ic
e
pr
e
di
c
ti
ve
pe
r
f
or
m
a
nc
e
,
pa
r
ti
c
ul
a
r
ly
w
he
n
de
a
li
ng
w
it
h
c
om
pl
e
x
a
nd
e
vol
vi
ng
phi
s
hi
ng
ta
c
ti
c
s
.
B
a
la
nc
in
g
a
c
c
ur
a
c
y
a
nd
in
te
r
pr
e
ta
bi
li
ty
r
e
m
a
in
a
c
r
it
ic
a
l
c
ha
ll
e
nge
i
n de
s
ig
ni
ng e
f
f
e
c
ti
ve
phi
s
hi
ng de
te
c
ti
on s
y
s
te
m
s
.
A
not
he
r
m
a
jo
r
c
ha
ll
e
nge
is
a
da
pt
in
g
in
te
r
pr
e
ta
bl
e
m
ode
ls
to
th
e
dyna
m
ic
na
tu
r
e
of
phi
s
hi
ng
a
tt
a
c
ks
.
C
ybe
r
c
r
im
in
a
ls
c
ont
in
uous
ly
r
e
f
in
e
th
e
ir
a
tt
a
c
k
s
tr
a
te
gi
e
s
,
le
v
e
r
a
gi
ng
a
dva
nc
e
d
obf
us
c
a
ti
on
te
c
hni
que
s
a
nd
s
oc
ia
l
e
ngi
ne
e
r
in
g
m
e
th
ods
to
bypa
s
s
de
te
c
ti
on.
A
s
a
r
e
s
ul
t,
in
te
r
pr
e
ta
bl
e
m
ode
ls
m
us
t
be
f
r
e
que
nt
ly
upda
te
d
to
m
a
in
ta
in
t
he
ir
a
c
c
ur
a
c
y w
hi
le
pr
e
s
e
r
vi
ng t
r
a
ns
pa
r
e
nc
y. U
nl
ik
e
de
e
p l
e
a
r
ni
ng mode
ls
t
ha
t
c
a
n a
ut
om
a
ti
c
a
ll
y
a
da
pt
th
r
ough
r
e
tr
a
in
in
g
on
la
r
ge
da
ta
s
e
ts
,
in
te
r
pr
e
ta
bl
e
m
ode
ls
of
te
n
r
e
qui
r
e
m
a
nua
l
f
e
a
tu
r
e
e
ngi
ne
e
r
in
g
a
n
d
r
ul
e
a
dj
us
tm
e
nt
s
, w
hi
c
h c
a
n b
e
t
im
e
-
c
ons
um
in
g a
nd r
e
s
our
c
e
-
in
te
ns
iv
e
.
2.3
.
D
is
c
u
s
s
io
n
on
t
h
e
l
im
it
at
io
n
s
of
t
r
ad
it
io
n
al
m
ac
h
in
e
l
e
ar
n
in
g ap
p
r
oac
h
e
s
i
n
t
h
is
c
on
t
e
xt
T
a
bl
e
2
s
um
m
a
r
iz
e
s
k
e
y
li
m
it
a
ti
ons
of
tr
a
di
ti
ona
l
m
a
c
hi
n
e
le
a
r
ni
ng
a
ppr
oa
c
he
s
in
phi
s
hi
ng
de
te
c
ti
on.
R
ul
e
-
ba
s
e
d
m
e
th
od
s
s
tr
uggl
e
to
de
t
e
c
t
s
ophi
s
ti
c
a
te
d
a
nd
e
vol
vi
ng
phi
s
hi
ng
te
c
hni
que
s
a
s
th
e
y
r
e
ly
on
pr
e
de
f
in
e
d
pa
tt
e
r
ns
.
S
upe
r
vi
s
e
d
le
a
r
ni
ng
a
lg
or
it
hm
s
de
pe
nd
he
a
vi
ly
on
la
be
le
d
da
ta
s
e
ts
,
m
a
ki
ng
th
e
m
in
e
f
f
e
c
ti
ve
a
ga
in
s
t
z
e
r
o
-
da
y
a
tt
a
c
k
s
due
to
th
e
ir
r
e
li
a
nc
e
on
hi
s
to
r
ic
a
l
da
ta
.
M
a
nu
a
l
f
e
a
tu
r
e
e
ngi
n
e
e
r
in
g
of
te
n
m
is
s
e
s
s
ubt
le
i
ndi
c
a
to
r
s
a
nd f
a
il
s
t
o c
a
pt
ur
e
c
om
pl
e
x r
e
la
ti
ons
hi
ps
i
n hi
gh
-
di
m
e
ns
io
na
l
da
ta
. A
ddi
ti
ona
ll
y, t
he
la
c
k
of
e
xpl
a
in
a
bi
li
ty
in
m
a
ny
m
ode
l
s
hi
nde
r
s
tr
us
t
a
nd
va
li
da
ti
on,
w
hi
le
poor
ge
n
e
r
a
li
z
a
ti
on
li
m
it
s
th
e
ir
a
c
c
ur
a
c
y a
nd r
e
li
a
bi
li
ty
i
n r
e
a
l
-
w
or
ld
s
c
e
na
r
io
s
w
he
r
e
phi
s
hi
ng
te
c
hni
que
s
c
on
s
ta
nt
ly
e
vol
ve
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
nt
J
A
r
ti
f
I
nt
e
ll
I
S
S
N
:
2252
-
8938
A
c
om
pr
e
he
ns
iv
e
r
e
v
ie
w
of
i
nt
e
r
p
r
e
ta
bl
e
m
ac
hi
n
e
l
e
ar
ni
ng t
e
c
h
ni
que
s
f
or
phi
s
hi
ng
…
(
P
ank
aj
C
handr
e
)
3025
T
a
bl
e
2
. S
um
m
a
r
y of
t
he
l
im
it
a
ti
ons
of
t
r
a
di
ti
ona
l
m
a
c
hi
ne
l
e
a
r
ni
ng
a
ppr
oa
c
he
s
f
or
phi
s
hi
ng a
tt
a
c
k de
te
c
ti
on
T
r
a
di
t
i
ona
l
m
a
c
hi
ne
l
e
a
r
ni
ng a
ppr
oa
c
h
L
i
m
i
t
a
t
i
ons
R
ul
e
-
ba
s
e
d
m
e
t
hods
L
i
m
i
t
e
d
a
bi
l
i
t
y
t
o
ha
ndl
e
c
om
pl
e
x
a
nd
e
vol
vi
ng
phi
s
hi
ng
t
e
c
hni
que
s
.
T
he
s
e
m
e
t
hods
r
e
l
y
he
a
vi
l
y
on
pr
e
de
f
i
ne
d
r
ul
e
s
a
nd
pa
t
t
e
r
ns
,
m
a
ki
ng
t
he
m
l
e
s
s
e
f
f
e
c
t
i
ve
a
ga
i
ns
t
s
ophi
s
t
i
c
a
t
e
d
a
t
t
a
c
ks
t
ha
t
m
a
y
not
c
onf
or
m
t
o pr
e
de
f
i
ne
d r
ul
e
s
.
S
upe
r
vi
s
e
d
l
e
a
r
ni
ng
a
l
gor
i
t
hm
s
D
e
pe
nde
nc
y
on
l
a
be
l
e
d
d
a
t
a
s
e
t
s
,
w
hi
c
h
c
a
n
be
s
c
a
r
c
e
a
nd
e
xpe
ns
i
v
e
t
o
obt
a
i
n.
P
hi
s
hi
ng
a
t
t
a
c
ks
a
r
e
di
ve
r
s
e
a
nd
c
ons
t
a
nt
l
y
e
vol
vi
ng,
m
a
ki
ng
i
t
c
ha
l
l
e
ngi
ng
t
o
c
ons
t
r
uc
t
c
om
pr
e
he
ns
i
ve
l
a
be
l
e
d
da
t
a
s
e
t
s
t
ha
t
c
a
pt
ur
e
t
he
f
ul
l
s
pe
c
t
r
um
of
a
t
t
a
c
k
va
r
i
a
t
i
ons
.
A
ddi
t
i
ona
l
l
y,
s
upe
r
vi
s
e
d
a
l
gor
i
t
hm
s
m
a
y
s
t
r
uggl
e
w
i
t
h
de
t
e
c
t
i
ng
pr
e
vi
ous
l
y uns
e
e
n or
z
e
r
o
-
da
y phi
s
hi
ng a
t
t
a
c
k
s
due
t
o t
he
i
r
r
e
l
i
a
nc
e
on hi
s
t
or
i
c
a
l
da
t
a
.
F
e
a
t
ur
e
e
ngi
ne
e
r
i
ng
M
a
nua
l
f
e
a
t
ur
e
s
e
l
e
c
t
i
on
a
nd
e
xt
r
a
c
t
i
on
r
e
qui
r
e
dom
a
i
n
e
xpe
r
t
i
s
e
a
nd
m
a
y
ove
r
l
ook
s
ubt
l
e
but
c
r
uc
i
a
l
i
ndi
c
a
t
or
s
of
phi
s
hi
ng.
M
or
e
ove
r
,
t
r
a
di
t
i
ona
l
f
e
a
t
ur
e
e
ngi
ne
e
r
i
ng
t
e
c
hni
que
s
m
a
y
not
a
de
qua
t
e
l
y
c
a
pt
ur
e
t
he
c
om
pl
e
x
r
e
l
a
t
i
ons
hi
ps
be
t
w
e
e
n
f
e
a
t
ur
e
s
i
n
hi
gh
-
di
m
e
ns
i
ona
l
d
a
t
a
,
l
i
m
i
t
i
ng
t
he
pe
r
f
or
m
a
nc
e
of
m
a
c
hi
ne
l
e
a
r
ni
ng m
ode
l
s
.
L
a
c
k of
e
xpl
a
i
na
bi
l
i
t
y
M
a
ny
t
r
a
di
t
i
ona
l
m
a
c
hi
ne
l
e
a
r
ni
ng
a
l
gor
i
t
hm
s
l
a
c
k
t
r
a
ns
pa
r
e
nc
y
a
nd
i
nt
e
r
pr
e
t
a
bi
l
i
t
y,
m
a
ki
ng
i
t
di
f
f
i
c
ul
t
t
o
unde
r
s
t
a
nd
t
he
r
e
a
s
oni
ng
be
hi
nd
t
he
i
r
pr
e
di
c
t
i
ons
.
T
hi
s
l
a
c
k
of
e
xpl
a
i
na
bi
l
i
t
y
hi
nde
r
s
t
r
us
t
a
nd
m
a
ke
s
i
t
c
ha
l
l
e
ngi
ng
f
or
c
ybe
r
s
e
c
ur
i
t
y
e
xpe
r
t
s
t
o
va
l
i
da
t
e
a
nd
i
nt
e
r
pr
e
t
t
he
m
ode
l
'
s
out
put
s
,
e
s
pe
c
i
a
l
l
y
i
n
c
r
i
t
i
c
a
l
de
c
i
s
i
on
-
m
a
ki
ng s
c
e
na
r
i
os
.
G
e
ne
r
a
l
i
z
a
t
i
on
T
r
a
di
t
i
ona
l
m
a
c
hi
ne
l
e
a
r
ni
ng
m
ode
l
s
m
a
y
ove
r
f
i
t
t
o
t
he
t
r
a
i
ni
ng
da
t
a
or
f
a
i
l
t
o
ge
ne
r
a
l
i
z
e
w
e
l
l
t
o
un
s
e
e
n
da
t
a
,
l
e
a
di
ng
t
o
r
e
duc
e
d
de
t
e
c
t
i
on
a
c
c
ur
a
c
y
a
nd
r
e
l
i
a
bi
l
i
t
y
i
n
r
e
a
l
-
w
or
l
d
s
e
t
t
i
ngs
.
T
hi
s
l
i
m
i
t
a
t
i
on
i
s
pa
r
t
i
c
ul
a
r
l
y
pr
obl
e
m
a
t
i
c
i
n
t
he
c
ont
e
xt
of
phi
s
hi
ng
a
t
t
a
c
k
de
t
e
c
t
i
on,
w
he
r
e
t
he
di
ve
r
s
i
t
y
a
nd
dyna
m
i
c
s
of
a
t
t
a
c
k
pa
t
t
e
r
ns
r
e
qui
r
e
m
ode
l
s
t
o
a
da
pt
a
nd
ge
ne
r
a
l
i
z
e
e
f
f
e
c
t
i
ve
l
y
a
c
r
os
s
di
f
f
e
r
e
nt
e
nvi
r
onm
e
nt
s
a
nd
s
c
e
na
r
i
os
.
3.
I
N
T
E
R
P
R
E
T
A
B
L
E
M
A
C
H
I
N
E
L
E
A
R
N
I
N
G
T
E
C
H
N
I
Q
U
E
S
W
he
n
it
c
om
e
s
to
phi
s
hi
ng
a
tt
a
c
k
de
t
e
c
ti
on,
in
te
r
pr
e
ta
bl
e
m
a
c
h
in
e
le
a
r
ni
ng
a
ppr
oa
c
he
s
a
r
e
one
s
th
a
t
not
onl
y
ge
ne
r
a
te
c
or
r
e
c
t
pr
e
di
c
ti
ons
but
a
ls
o
m
a
ke
th
e
pr
oc
e
s
s
of
m
a
ki
ng
th
o
s
e
pr
e
di
c
ti
ons
tr
a
ns
pa
r
e
nt
a
nd
e
a
s
y t
o unde
r
s
ta
nd
[
16]
. B
y i
m
pr
ovi
ng our
unde
r
s
ta
ndi
ng of
t
he
f
unda
m
e
nt
a
l
e
le
m
e
nt
s
t
ha
t
go i
nt
o c
la
s
s
if
yi
ng
phi
s
hi
ng
a
s
s
a
ul
ts
,
th
e
s
e
s
tr
a
te
gi
e
s
hop
e
to
m
a
ke
it
s
im
pl
e
r
f
or
s
e
c
ur
it
y
a
na
ly
s
ts
to
de
c
ip
he
r
a
nd
r
e
ly
on
th
e
m
ode
l'
s
c
onc
lu
s
io
ns
.
K
e
y a
s
p
e
c
ts
of
i
nt
e
r
pr
e
ta
bl
e
m
a
c
hi
ne
l
e
a
r
ni
ng t
e
c
hni
que
s
i
nc
lu
de
:
‒
I
m
por
ta
nc
e
of
qua
li
ti
e
s
:
th
e
s
e
m
e
th
ods
id
e
nt
if
y
th
e
c
ha
r
a
c
te
r
is
ti
c
s
or
qua
li
ti
e
s
of
da
ta
th
a
t
h
a
ve
th
e
gr
e
a
te
s
t
be
a
r
in
g
on
w
he
th
e
r
a
n
in
c
id
e
nt
qua
li
f
ie
s
a
s
a
phi
s
hi
ng a
s
s
a
ul
t.
A
na
ly
s
ts
c
a
n
obt
a
in
in
s
ig
ht
s
in
to
th
e
na
tu
r
e
of
phi
s
hi
ng a
tt
e
m
pt
s
by pinpoi
nt
in
g c
r
uc
ia
l
f
e
a
tu
r
e
s
.
‒
M
ode
l
e
xpl
a
in
a
bi
li
ty
:
be
c
a
us
e
of
th
e
ir
tr
a
ns
pa
r
e
nt
de
c
is
io
n
-
m
a
ki
ng
pr
oc
e
s
s
,
in
te
r
pr
e
ta
bl
e
m
ode
ls
li
ke
de
c
is
io
n
tr
e
e
s
,
r
ul
e
-
ba
s
e
d
s
ys
te
m
s
,
a
nd
li
ne
a
r
m
ode
ls
a
r
e
f
a
vour
e
d.
T
he
y
of
f
e
r
c
om
pr
e
he
ns
ib
le
ju
s
ti
f
ic
a
ti
ons
f
or
t
he
c
hoi
c
e
s
c
ho
s
e
n,
w
hi
c
h pr
om
ot
e
s
c
onf
id
e
n
c
e
a
nd he
lp
s
t
o s
pot
po
s
s
ib
le
w
e
a
k point
s
.
‒
L
oc
a
l
e
xpl
a
na
ti
ons
:
in
te
r
pr
e
ta
bl
e
te
c
hni
que
s
of
f
e
r
e
xpl
a
na
ti
o
ns
a
t
th
e
in
s
ta
n
c
e
le
v
e
l
in
a
ddi
ti
on
to
c
onc
e
nt
r
a
ti
ng
e
xc
lu
s
iv
e
ly
on
th
e
gl
oba
l
be
ha
vi
our
of
th
e
m
od
e
l.
T
hi
s
e
na
bl
e
s
a
na
ly
s
ts
to
c
om
pr
e
he
nd
th
e
r
a
ti
ona
le
be
hi
nd
a
gi
ve
n
in
s
ta
nc
e
'
s
c
la
s
s
if
ic
a
ti
on
a
s
a
ge
nu
in
e
or
phi
s
hi
ng
a
tt
a
c
k,
e
na
bl
in
g
f
oc
us
e
d
a
c
ti
ons
.
‒
V
is
ua
li
s
a
ti
on:
c
om
pl
e
x
m
a
c
hi
ne
le
a
r
ni
ng
pr
oc
e
s
s
e
s
a
r
e
m
a
de
s
i
m
pl
e
r
by
us
in
g
vi
s
u
a
l
r
e
pr
e
s
e
nt
a
ti
ons
of
m
ode
l
de
c
is
io
ns
,
f
e
a
tu
r
e
im
por
ta
nc
e
,
a
nd
de
c
is
io
n
li
m
it
s
.
A
na
ly
s
ts
c
a
n
m
a
ke
m
or
e
in
f
or
m
e
d
de
c
is
io
ns
by us
in
g gr
a
phi
c
di
s
pl
a
ys
t
o he
lp
t
he
m
i
nt
ui
ti
ve
ly
i
de
nt
if
y t
r
e
nds
a
nd a
bnor
m
a
li
ti
e
s
.
‒
P
e
r
f
or
m
a
nc
e
vs
.
in
te
r
pr
e
ta
bi
li
ty
tr
a
de
-
of
f
:
to
a
c
hi
e
ve
tr
a
ns
p
a
r
e
nc
y,
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
m
ode
ls
f
r
e
que
nt
ly
gi
ve
up
s
om
e
pr
e
di
c
te
d
a
c
c
ur
a
c
y.
I
n
r
e
a
l
-
w
or
ld
a
ppl
ic
a
ti
ons
,
s
tr
ik
in
g
th
e
c
or
r
e
c
t
ba
la
nc
e
be
twe
e
n i
nt
e
r
pr
e
ta
bi
li
ty
a
nd pe
r
f
or
m
a
nc
e
of
t
he
m
ode
l
is
e
s
s
e
nt
ia
l.
3.
1.
I
n
t
r
od
u
c
t
io
n
t
o i
n
t
e
r
p
r
e
t
ab
le
m
ac
h
in
e
l
e
ar
n
in
g an
d
i
t
s
r
e
le
van
c
e
i
n
c
yb
e
r
s
e
c
u
r
it
y
T
he
in
tr
oduc
ti
on
of
"
I
nt
e
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
te
c
hni
que
s
f
or
phi
s
hi
ng
a
tt
a
c
k
de
te
c
ti
on:
a
c
om
pr
e
he
ns
iv
e
r
e
vi
e
w
a
nd
a
na
ly
s
i
s
"
s
e
r
ve
s
a
s
th
e
f
ounda
ti
on
f
or
unde
r
s
ta
ndi
ng
th
e
s
ig
ni
f
ic
a
nc
e
of
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
in
th
e
c
ont
e
xt
of
c
yb
e
r
s
e
c
ur
it
y,
pa
r
ti
c
ul
a
r
ly
in
c
om
ba
ti
ng
phi
s
hi
ng
a
tt
a
c
k
s
[
17]
.
I
t
s
ta
r
ts
out
by
e
xpl
a
in
in
g
how
c
ybe
r
d
a
nge
r
s
a
r
e
c
ha
n
gi
ng
a
nd
how
phi
s
hi
ng
i
s
be
c
om
in
g
a
m
or
e
c
om
m
on
a
nd
s
ig
ni
f
ic
a
nt
a
tt
a
c
k
ve
c
to
r
.
D
ue
to
th
e
in
tr
ic
a
c
y
a
nd
s
ophi
s
ti
c
a
ti
on
of
phi
s
hi
ng
a
tt
e
m
pt
s
,
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
is
be
in
g
in
ve
s
ti
ga
te
d
a
s
a
pot
e
nt
ia
l
r
e
m
e
dy.
T
he
s
e
c
ti
on
e
xpl
or
e
s
th
e
id
e
a
of
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng,
e
m
pha
s
is
in
g
how
it
di
f
f
e
r
s
f
r
om
c
onve
nt
io
na
l
bl
a
c
k
-
box
m
ode
ls
.
T
r
a
ns
pa
r
e
nc
y
a
nd
e
xpl
a
in
a
bi
li
ty
a
r
e
gi
ve
n
pr
io
r
it
y
in
in
te
r
p
r
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
te
c
hni
que
s
,
m
a
ki
ng
it
e
a
s
ie
r
f
or
pr
a
c
ti
ti
one
r
s
a
nd
s
e
c
ur
it
y
a
na
ly
s
ts
to
unde
r
s
ta
nd
ho
w
m
ode
ls
m
a
ke
ju
dge
m
e
nt
s
.
I
n
c
ybe
r
s
e
c
ur
it
y,
th
is
tr
a
ns
pa
r
e
nc
y
is
c
r
it
ic
a
l
s
in
c
e
e
f
f
e
c
ti
ve
th
r
e
a
t
m
it
ig
a
ti
on
d
e
pe
nds
on
th
e
u
s
e
r
'
s
a
bi
li
ty
to
unde
r
s
ta
nd
a
nd
tr
us
t
m
ode
l
r
e
s
ul
ts
.
T
he
in
tr
oduc
ti
on
a
ls
o
e
m
pha
s
is
e
s
how
c
r
uc
ia
l
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
is
to
f
os
te
r
in
g
c
oope
r
a
ti
on
be
twe
e
n
a
ut
om
a
te
d
s
ys
te
m
s
a
nd
hum
a
n
a
na
ly
s
ts
.
I
nt
e
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
e
na
bl
e
s
a
na
ly
s
ts
to
im
pr
ove
ove
r
a
ll
c
ybe
r
r
e
s
il
ie
nc
e
by
v
a
li
da
ti
ng
a
nd
f
in
e
-
tu
ni
ng
de
te
c
ti
on
s
tr
a
te
gi
e
s
by
of
f
e
r
in
g
in
s
ig
ht
s
in
to
m
ode
l
pr
e
di
c
ti
ons
a
nd
de
c
is
io
n
-
m
a
ki
ng
pr
oc
e
s
s
e
s
[
18]
.
I
t
a
l
s
o
di
s
c
u
s
s
e
s
c
om
pl
ia
nc
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
S
N
:
2252
-
8938
I
nt
J
A
r
ti
f
I
nt
e
ll
,
V
ol
.
14
, N
o.
4
,
A
ugus
t
20
25
:
3022
-
3032
3026
c
onc
e
r
ns
a
nd
th
e
r
e
gul
a
to
r
y
e
nvi
r
onm
e
nt
,
hi
ghl
ig
ht
in
g
th
e
ne
c
e
s
s
it
y
of
tr
a
ns
pa
r
e
nt
a
nd
a
c
c
ount
a
bl
e
a
r
ti
f
ic
ia
l
in
te
ll
ig
e
nc
e
(
A
I
)
s
ys
te
m
s
i
n c
ybe
r
s
e
c
ur
it
y a
ppl
ic
a
ti
ons
.
3.2
.
O
ve
r
vi
e
w
of
va
r
io
u
s
i
n
t
e
r
p
r
e
t
ab
le
m
ac
h
in
e
l
e
ar
n
in
g m
od
e
ls
s
u
it
ab
le
f
or
p
h
is
h
in
g d
e
t
e
c
t
io
n
"
I
nt
e
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
te
c
hni
que
s
f
or
phi
s
hi
ng
a
tt
a
c
k
de
te
c
ti
on:
a
c
om
pr
e
he
n
s
iv
e
r
e
vi
e
w
a
nd a
na
ly
s
is
"
a
im
s
t
o e
xpl
or
e
a
nd e
va
lu
a
te
va
r
io
us
i
nt
e
r
pr
e
ta
bl
e
m
a
c
hi
ne
l
e
a
r
ni
ng mode
ls
t
ha
t
a
r
e
s
ui
ta
bl
e
f
o
r
de
te
c
ti
ng
phi
s
hi
ng
a
tt
a
c
ks
.
F
or
c
ybe
r
s
e
c
ur
it
y
a
ppl
ic
a
ti
ons
,
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
m
ode
ls
a
r
e
e
s
s
e
nt
ia
l
be
c
a
us
e
th
e
y
pr
ovi
de
li
ght
on
th
e
m
ode
l
'
s
de
c
is
io
n
-
m
a
ki
ng
pr
oc
e
s
s
a
nd
m
a
ke
it
s
im
pl
e
r
f
or
s
e
c
ur
it
y
a
na
ly
s
ts
to
c
om
pr
e
he
nd
a
nd
be
li
e
ve
th
e
pr
e
di
c
ti
ons
m
a
de
by
th
e
m
ode
l.
W
it
h
a
n
e
m
pha
s
is
on
th
e
ir
s
ui
ta
bi
li
ty
f
or
phi
s
hi
ng
de
te
c
ti
on,
w
e
w
il
l
pr
e
s
e
nt
a
n
ove
r
vi
e
w
of
m
a
ny
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
a
ppr
oa
c
he
s
in
th
is
s
tu
dy,
in
c
lu
di
ng
de
c
is
io
n
tr
e
e
s
,
r
ul
e
-
ba
s
e
d
m
ode
ls
,
li
ne
a
r
m
ode
ls
,
a
nd
e
ns
e
m
bl
e
m
e
th
ods
.
B
y
di
s
pl
a
yi
ng
de
c
is
io
n
r
ul
e
s
in
a
hi
e
r
a
r
c
hi
c
a
l
f
r
a
m
e
w
or
k,
de
c
is
io
n
tr
e
e
s
pr
ovi
de
tr
a
ns
pa
r
e
nc
y
a
nd
m
a
ke
it
pos
s
ib
le
f
or
a
na
ly
s
ts
to
c
om
pr
e
he
nd
th
e
r
e
a
s
oni
ng
be
hi
nd
e
a
c
h
c
hoi
c
e
[
19]
.
C
onve
r
s
e
ly
,
r
ul
e
-
ba
s
e
d
m
ode
l
s
of
f
e
r
c
le
a
r
r
ul
e
s
th
a
t
dom
a
in
s
pe
c
ia
li
s
ts
m
a
y
unde
r
s
ta
nd
w
it
h
e
a
s
e
.
W
e
w
il
l
a
ls
o
ta
lk
a
bout
li
ne
a
r
m
ode
ls
,
li
ke
lo
gi
s
ti
c
r
e
gr
e
s
s
io
n,
w
hi
c
h
pr
ovi
de
c
le
a
r
a
nd
s
tr
a
ig
ht
f
or
w
a
r
d
f
e
a
tu
r
e
im
por
ta
nc
e
r
e
pr
e
s
e
nt
a
ti
on.
B
y
c
om
bi
ni
ng
pr
e
di
c
ti
ons
f
r
om
s
e
ve
r
a
l
ba
s
e
m
ode
l
s
,
e
ns
e
m
bl
e
te
c
hni
que
s
s
uc
h
a
s
r
a
ndom
f
or
e
s
ts
a
nd
gr
a
di
e
nt
boo
s
ti
ng
of
f
e
r
in
te
r
pr
e
ta
bi
li
ty
a
nd
a
c
c
ur
a
c
y.
W
e
w
il
l
e
xa
m
in
e
th
e
b
e
ne
f
it
s
a
nd
dr
a
w
ba
c
k
s
of
e
a
c
h
m
e
th
od
f
or
phi
s
hi
ng
de
te
c
ti
on, t
a
ki
ng i
nt
o a
c
c
ount
a
s
p
e
c
ts
l
ik
e
s
c
a
la
bi
li
ty
, m
ode
l
c
o
m
pl
e
xi
ty
, a
nd i
nt
e
r
pr
e
ta
bi
li
ty
of
f
e
a
tu
r
e
s
[
20]
.
3.3
.
D
e
t
a
il
e
d
e
x
p
l
an
at
i
on
o
f
e
a
c
h
t
e
c
h
n
iq
u
e
,
i
n
c
lu
d
in
g
d
e
c
i
s
io
n
t
r
e
e
s
,
r
u
l
e
-
b
a
s
e
d
m
o
d
e
l
s
,
L
I
M
E
,
an
d
S
H
A
P
3.3.1.
D
e
c
is
io
n
t
r
e
e
s
T
he
m
os
t
di
s
c
r
im
in
a
ti
ve
qua
li
ti
e
s
a
r
e
us
e
d
to
di
vi
de
th
e
f
e
a
tu
r
e
s
pa
c
e
in
de
c
i
s
io
n
tr
e
e
s
,
w
hi
c
h
a
r
e
s
im
pl
e
,
s
tr
a
ig
ht
f
or
w
a
r
d
m
ode
ls
.
D
e
c
is
io
n
tr
e
e
s
w
e
r
e
us
e
d
to
di
vi
de
th
e
in
f
or
m
a
ti
on
in
to
s
ubs
e
ts
f
or
th
e
pur
pos
e
of
phi
s
hi
ng
a
tt
a
c
k
id
e
nt
if
ic
a
ti
on
[
21]
.
T
he
s
e
s
ubs
e
ts
w
e
r
e
id
e
nt
if
ie
d
by
c
r
it
e
r
ia
s
uc
h
a
s
U
R
L
a
tt
r
ib
ut
e
s
,
dom
a
in
a
ge
,
or
th
e
in
c
lu
s
io
n
of
s
u
s
pi
c
io
us
phr
a
s
e
s
.
A
c
hoi
c
e
is
ta
k
e
n
ba
s
e
d
on
a
f
e
a
tu
r
e
va
lu
e
a
t
e
ve
r
y
node
in
th
e
tr
e
e
,
w
hi
c
h
c
a
us
e
s
m
or
e
s
pl
it
s
unt
il
th
e
ul
ti
m
a
te
de
c
is
io
n
is
r
e
a
c
he
d
a
t
th
e
le
a
f
node
s
.
A
na
ly
s
ts
c
a
n
f
ol
lo
w
th
e
de
c
i
s
io
n
-
m
a
ki
ng
pr
oc
e
s
s
a
nd
c
om
pr
e
he
nd
th
e
r
e
a
s
oni
ng
f
or
c
a
t
e
gor
is
in
g
c
a
s
e
s
a
s
a
ut
he
nt
ic
or
phi
s
hi
ng t
ha
nks
t
o t
hi
s
hi
e
r
a
r
c
hi
c
a
l
s
tr
uc
tu
r
e
.
3.3.2.
R
u
le
-
b
as
e
d
m
od
e
ls
R
ul
e
-
ba
s
e
d
m
ode
l
s
a
r
e
ve
r
y
in
te
r
pr
e
ta
bl
e
s
in
c
e
th
e
y
de
f
in
e
d
e
te
c
ti
on
r
ul
e
s
a
s
if
-
th
e
n
s
ta
te
m
e
nt
s
.
T
he
s
e
r
e
gul
a
ti
ons
c
le
a
r
ly
la
y
f
or
th
c
r
it
e
r
ia
ba
s
e
d
on
c
h
a
r
a
c
te
r
is
t
ic
s
th
a
t
poi
nt
to
phi
s
hi
ng a
c
ti
vi
ty
,
li
ke
s
tr
a
nge
pa
tt
e
r
ns
in
U
R
L
s
or
di
f
f
e
r
e
nc
e
s
in
dom
a
in
na
m
e
s
[
22]
.
A
r
ul
e
m
ig
ht
s
a
y,
f
or
in
s
ta
nc
e
,
"
c
la
s
s
if
y
th
e
U
R
L
a
s
phi
s
hi
ng
if
it
c
ont
a
in
s
a
n
in
te
r
ne
t
pr
ot
oc
ol
a
ddr
e
s
s
(
IP
)
a
ddr
e
s
s
a
nd
la
c
ks
hyp
e
r
te
xt
tr
a
ns
f
e
r
pr
ot
oc
ol
s
e
c
ur
e
(
H
T
T
P
S
)
"
.
T
he
s
e
m
ode
ls
of
f
e
r
tr
a
ns
pa
r
e
nt
de
c
is
io
n
-
m
a
ki
n
g
pr
oc
e
dur
e
s
by
f
ol
lo
w
in
g
pr
e
-
e
s
ta
bl
is
he
d
gui
de
li
ne
s
, w
hi
c
h e
na
bl
e
a
na
ly
s
t
s
t
o c
onf
ir
m
a
nd a
s
s
e
s
s
t
he
l
ogi
c
unde
r
ly
in
g e
a
c
h c
la
s
s
if
ic
a
ti
on.
3.3.3.
L
oc
al
in
t
e
r
p
r
e
t
ab
le
m
od
e
l
-
agn
os
t
ic
e
xp
la
n
at
io
n
s
A
pos
t
-
hoc
in
te
r
pr
e
ta
bi
li
ty
m
e
th
od
c
a
ll
e
d
l
oc
a
l
in
te
r
pr
e
ta
bl
e
m
ode
l
-
a
gnos
ti
c
e
xpl
a
na
ti
on
s
(
L
I
M
E
)
w
a
s
c
r
e
a
te
d
to
c
la
r
if
y
s
pe
c
if
ic
pr
e
di
c
ti
ons
m
a
de
by
in
tr
ic
a
te
bl
a
c
k
-
box
m
ode
ls
.
I
t
f
unc
ti
ons
by
pr
oduc
in
g
lo
c
a
ll
y
r
e
le
va
nt
,
in
te
r
pr
e
ta
bl
e
e
xpl
a
na
ti
ons
f
or
m
ode
l
pr
e
di
c
ti
ons
,
c
onc
e
nt
r
a
ti
ng
on
a
pa
r
ti
c
ul
a
r
c
a
s
e
of
in
te
r
e
s
t
[
23]
.
L
I
M
E
a
ppr
oxi
m
a
te
s
th
e
be
ha
vi
our
of
th
e
m
ode
l
lo
c
a
ll
y
by
va
r
yi
ng
th
e
in
put
f
e
a
tu
r
e
s
s
ur
r
ounding
th
e
in
s
ta
nc
e
a
nd
tr
a
c
ki
ng
th
e
r
e
s
ul
ti
ng
c
h
a
nge
s
in
th
e
m
ode
l'
s
out
put
.
L
I
M
E
he
lp
s
a
na
ly
s
ts
c
om
pr
e
he
nd
m
ode
l
de
c
is
io
n
s
by
pr
ovi
di
ng
in
s
ig
ht
s
in
to
w
hy
a
s
pe
c
if
ic
in
s
ta
n
c
e
w
a
s
la
be
ll
e
d
a
s
phi
s
hi
ng
or
not
, by highl
ig
ht
in
g t
he
m
os
t
r
e
le
va
nt
f
e
a
tu
r
e
s
l
e
a
di
ng t
o t
he
pr
e
di
c
ti
on.
3.3.4.
S
h
ap
le
y ad
d
i
t
iv
e
e
xp
la
n
at
io
n
s
A
not
he
r
pos
t
-
hoc
in
te
r
pr
e
ta
bi
li
ty
te
c
hni
que
c
a
ll
e
d
li
ke
S
ha
pl
e
y
a
ddi
ti
ve
e
xpl
a
na
ti
ons
(
S
H
A
P
)
a
ll
oc
a
te
s
th
e
c
ont
r
ib
ut
io
n
of
e
a
c
h
f
e
a
tu
r
e
to
th
e
out
put
pr
e
di
c
ti
on
of
th
e
m
ode
l
[
24]
.
I
t
e
s
ti
m
a
te
s
f
e
a
tu
r
e
im
por
ta
nc
e
va
lu
e
s
by
ut
il
is
in
g
id
e
a
s
f
r
om
c
oope
r
a
ti
ve
ga
m
e
t
he
or
y,
not
a
bl
y
s
ha
pl
e
y
va
lu
e
s
.
T
o
pr
ovi
de
a
th
or
ough
knowle
dge
of
f
e
a
tu
r
e
im
pa
c
t,
S
H
A
P
c
om
put
e
s
th
e
m
a
r
gi
na
l
c
ont
r
ib
ut
io
n
of
e
a
c
h
f
e
a
tu
r
e
to
th
e
pr
e
di
c
ti
on
out
c
om
e
a
c
r
os
s
a
ll
pot
e
nt
ia
l
pe
r
m
ut
a
ti
ons
.
S
H
A
P
c
la
r
if
ie
s
th
e
f
unda
m
e
nt
a
l
pr
in
c
ip
le
s
be
hi
nd
phi
s
hi
ng
a
tt
a
c
k
de
t
e
c
ti
on
m
ode
ls
by
qua
nt
if
yi
ng
th
e
im
pa
c
t
of
s
pe
c
if
ic
va
r
ia
bl
e
s
on
m
ode
l
pr
e
di
c
ti
on
s
.
T
hi
s
he
lp
s
a
na
ly
s
t
s
t
o pr
ope
r
ly
t
e
s
t
a
nd t
r
us
t
th
e
m
ode
ls
'
f
unc
ti
oni
ng.
T
he
s
e
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
a
lg
or
it
hm
s
,
in
e
s
s
e
nc
e
,
o
f
f
e
r
va
r
yi
ng
de
gr
e
e
s
of
t
r
a
ns
pa
r
e
nc
y
a
nd
in
s
ig
ht
in
to
th
e
phi
s
hi
ng
a
tt
a
c
k
de
te
c
ti
on
m
ode
ls
'
d
e
c
is
io
n
-
m
a
ki
ng
pr
oc
e
s
s
.
W
hi
le
L
I
M
E
a
nd
S
H
A
P
of
f
e
r
pos
t
-
hoc
e
xpl
a
na
ti
ons
f
or
s
ophi
s
ti
c
a
t
e
d
bl
a
c
k
-
box
m
ode
l
s
,
de
c
is
io
n
tr
e
e
s
a
nd
r
ul
e
-
ba
s
e
d
m
ode
ls
pr
ovi
de
c
le
a
r
de
c
is
io
n r
ul
e
s
, i
m
pr
ovi
ng t
he
i
nt
e
r
p
r
e
ta
bi
li
ty
a
nd r
e
li
a
bi
li
ty
of
p
hi
s
hi
ng de
te
c
ti
on s
ys
te
m
s
.
T
a
bl
e
3 s
how
s
t
ha
t
th
e
s
um
m
a
r
y of
e
xpl
a
in
a
bl
e
AI
te
c
hni
que
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
nt
J
A
r
ti
f
I
nt
e
ll
I
S
S
N
:
2252
-
8938
A
c
om
pr
e
he
ns
iv
e
r
e
v
ie
w
of
i
nt
e
r
p
r
e
ta
bl
e
m
ac
hi
n
e
l
e
ar
ni
ng t
e
c
h
ni
que
s
f
or
phi
s
hi
ng
…
(
P
ank
aj
C
handr
e
)
3027
T
a
bl
e
3
. S
um
m
a
r
y of
e
xpl
a
in
a
bl
e
AI
te
c
hni
que
s
T
e
c
hni
que
D
e
s
c
r
i
pt
i
on
A
dva
nt
a
ge
s
L
i
m
i
t
a
t
i
ons
D
e
c
i
s
i
on
t
r
e
e
s
D
e
c
i
s
i
on
t
r
e
e
s
a
r
e
hi
e
r
a
r
c
hi
c
a
l
t
r
e
e
s
t
r
uc
t
ur
e
s
w
he
r
e
i
nt
e
r
na
l
node
s
r
e
pr
e
s
e
nt
f
e
a
t
ur
e
s
or
a
t
t
r
i
bu
t
e
s
,
br
a
nc
he
s
r
e
pr
e
s
e
nt
de
c
i
s
i
ons
or
r
ul
e
s
, a
nd
l
e
a
f
node
s
r
e
pr
e
s
e
nt
out
c
om
e
s
.
T
he
y'
r
e
i
nt
e
r
pr
e
t
a
bl
e
a
nd
c
a
n
e
a
s
i
l
y
s
how
how
a
de
c
i
s
i
on
i
s
m
a
de
b
a
s
e
d
on f
e
a
t
ur
e
va
l
ue
s
.
E
a
s
y
t
o
i
nt
e
r
pr
e
t
a
nd
unde
r
s
t
a
nd
,
c
a
n
ha
ndl
e
bot
h
num
e
r
i
c
a
l
a
nd
c
a
t
e
gor
i
c
a
l
da
t
a
,
a
ut
om
a
t
i
c
a
l
l
y
ha
ndl
e
s
f
e
a
t
ur
e
s
e
l
e
c
t
i
on
a
nd
i
nt
e
r
a
c
t
i
on
,
c
a
n
be
vi
s
ua
l
i
z
e
d
f
or
be
t
t
e
r
unde
r
s
t
a
ndi
ng
.
P
r
one
t
o
ove
r
f
i
t
t
i
ng,
e
s
pe
c
i
a
l
l
y
w
i
t
h
c
om
pl
e
x
da
t
a
s
e
t
s
,
c
a
n
c
r
e
a
t
e
bi
a
s
e
d
t
r
e
e
s
i
f
t
he
da
t
a
s
e
t
i
s
i
m
ba
l
a
nc
e
d
,
m
a
y
not
c
a
pt
ur
e
c
om
pl
e
x
r
e
l
a
t
i
ons
hi
ps
i
n
t
he
da
t
a
e
f
f
e
c
t
i
ve
l
y
.
R
ul
e
-
ba
s
e
d
m
ode
l
s
R
ul
e
-
ba
s
e
d
m
ode
l
s
us
e
a
s
e
t
of
r
ul
e
s
t
o
c
l
a
s
s
i
f
y
i
ns
t
a
nc
e
s
.
T
he
s
e
r
ul
e
s
a
r
e
us
ua
l
l
y
i
n t
he
f
or
m
of
"if
-
t
he
n" s
t
a
t
e
m
e
nt
s
, m
a
ki
ng
t
he
m
hi
ghl
y
i
nt
e
r
pr
e
t
a
bl
e
.
T
he
y'
r
e
e
a
s
y
t
o
unde
r
s
t
a
nd
a
nd
c
a
n
di
r
e
c
t
l
y
m
a
p
f
e
a
t
ur
e
va
l
ue
s
t
o
c
l
a
s
s
l
a
b
e
l
s
,
a
i
di
ng
i
n
e
xpl
a
i
ni
ng
t
he
m
ode
l
'
s
de
c
i
s
i
on
-
m
a
ki
ng pr
oc
e
s
s
.
H
i
ghl
y
i
nt
e
r
pr
e
t
a
bl
e
a
nd
t
r
a
ns
pa
r
e
nt
,
e
a
s
y
t
o
i
m
pl
e
m
e
nt
a
nd
de
pl
oy
,
c
a
n
ha
ndl
e
bot
h
num
e
r
i
c
a
l
a
nd
c
a
t
e
gor
i
c
a
l
da
t
a
,
pr
ovi
de
s
e
xpl
i
c
i
t
r
ul
e
s
f
or
de
c
i
s
i
on m
a
ki
ng
.
M
a
y
s
u
f
f
e
r
f
r
o
m
o
ve
r
f
i
t
t
i
ng
i
f
t
he
r
ul
e
s
e
t
be
c
o
m
e
s
t
oo
c
om
pl
e
x,
l
i
m
i
t
e
d
e
xp
r
e
s
s
i
ve
n
e
s
s
c
om
pa
r
e
d
t
o
o
t
he
r
m
ode
l
s
l
i
ke
ne
u
r
a
l
n
e
t
w
o
r
ks
o
r
e
ns
e
m
bl
e
m
e
t
hods
r
e
q
ui
r
e
s
d
om
a
i
n
e
xpe
r
t
i
s
e
t
o
de
s
i
gn
e
f
f
e
c
t
i
ve
r
u
l
e
s
.
L
I
M
E
L
I
M
E
i
s
a
m
ode
l
-
a
gnos
t
i
c
t
e
c
hni
que
t
ha
t
e
xpl
a
i
ns
i
ndi
vi
dua
l
pr
e
di
c
t
i
ons
of
bl
a
c
k
-
box
m
a
c
hi
ne
l
e
a
r
ni
ng
m
ode
l
s
by
a
ppr
oxi
m
a
t
i
ng
t
he
m
w
i
t
h
i
nt
e
r
pr
e
t
a
bl
e
s
ur
r
oga
t
e
m
ode
l
s
l
oc
a
l
l
y.
I
t
ge
ne
r
a
t
e
s
e
xpl
a
na
t
i
ons
i
n
t
he
f
or
m
of
s
i
m
pl
e
,
i
nt
e
r
pr
e
t
a
bl
e
r
ul
e
s
or
e
xpl
a
na
t
i
ons
t
ha
t
c
a
n
he
l
p us
e
r
s
und
e
r
s
t
a
nd w
hy
a
m
ode
l
m
a
d
e
a
pa
r
t
i
c
ul
a
r
pr
e
di
c
t
i
on.
P
r
ovi
de
s
l
oc
a
l
i
nt
e
r
pr
e
t
a
bl
e
e
xpl
a
na
t
i
ons
f
or
c
om
pl
e
x
m
ode
l
s
,
a
l
l
ow
s
u
s
e
r
s
t
o
unde
r
s
t
a
nd
m
ode
l
pr
e
di
c
t
i
ons
a
t
t
he
i
ns
t
a
nc
e
l
e
ve
l
,
c
a
n
be
a
ppl
i
e
d t
o a
ny bl
a
c
k
-
box m
ode
l
w
i
t
hout
a
c
c
e
s
s
t
o
i
nt
e
r
na
l
m
ode
l
pa
r
a
m
e
t
e
r
s
.
M
a
y
not
a
l
w
a
ys
a
c
c
ur
a
t
e
l
y
r
e
pr
e
s
e
nt
t
he
gl
oba
l
be
ha
vi
or
of
t
he
m
ode
l
,
c
om
put
a
t
i
ona
l
l
y
e
xpe
ns
i
ve
f
or
l
a
r
ge
da
t
a
s
e
t
s
or
c
om
pl
e
x
m
ode
l
s
,
r
e
qui
r
e
s
s
e
l
e
c
t
i
ng a
r
e
pr
e
s
e
nt
a
t
i
ve
s
ub
s
e
t
of
i
ns
t
a
nc
e
s
f
or
e
xpl
a
na
t
i
on
ge
ne
r
a
t
i
on,
w
hi
c
h
m
a
y
i
nt
r
oduc
e
bi
a
s
.
S
H
A
P
S
H
A
P
va
l
ue
s
pr
ovi
de
a
w
a
y
t
o
e
xpl
a
i
n
t
he
out
put
of
a
ny
m
a
c
hi
ne
l
e
a
r
ni
ng
m
ode
l
by
a
t
t
r
i
but
i
ng
t
he
pr
e
di
c
t
i
on
out
c
om
e
t
o
e
a
c
h
i
nput
f
e
a
t
ur
e
.
T
he
y
r
e
pr
e
s
e
nt
t
he
a
ve
r
a
ge
c
ont
r
i
but
i
on
of
a
f
e
a
t
ur
e
va
l
ue
t
o
t
he
pr
e
di
c
t
i
on
a
c
r
os
s
a
l
l
pos
s
i
bl
e
pe
r
m
ut
a
t
i
ons
of
f
e
a
t
ur
e
s
.
S
H
A
P
va
l
ue
s
of
f
e
r
gl
oba
l
i
nt
e
r
pr
e
t
a
bi
l
i
t
y
by
s
how
i
ng
t
he
i
m
pa
c
t
of
e
a
c
h f
e
a
t
ur
e
on t
he
m
ode
l
'
s
out
put
.
O
f
f
e
r
s
gl
oba
l
i
nt
e
r
pr
e
t
a
bi
l
i
t
y
by
qua
nt
i
f
yi
ng
t
he
c
ont
r
i
but
i
on
of
e
a
c
h
f
e
a
t
ur
e
t
o
m
ode
l
pr
e
di
c
t
i
ons
,
a
c
c
ount
s
f
or
i
nt
e
r
a
c
t
i
ons
be
t
w
e
e
n
f
e
a
t
ur
e
s
,
pr
ovi
de
s
a
c
ons
i
s
t
e
nt
e
xpl
a
na
t
i
on
m
e
t
hod
a
c
r
os
s
di
f
f
e
r
e
nt
m
ode
l
s
a
nd da
t
a
s
e
t
s
.
C
om
put
a
t
i
ona
l
l
y
e
xpe
ns
i
ve
f
or
l
a
r
ge
da
t
a
s
e
t
s
or
m
ode
l
s
w
i
t
h
m
a
ny
f
e
a
t
ur
e
s
,
i
nt
e
r
pr
e
t
a
bi
l
i
t
y
m
i
ght
be
c
ha
l
l
e
ngi
ng
w
h
e
n
de
a
l
i
ng
w
i
t
h
hi
ghl
y
c
or
r
e
l
a
t
e
d
f
e
a
t
ur
e
s
,
i
nt
e
r
pr
e
t
a
t
i
on
m
i
ght
not
a
l
w
a
ys
be
i
nt
ui
t
i
ve
f
or
non
-
t
e
c
hni
c
a
l
us
e
r
s
,
r
e
qui
r
e
s
c
a
r
e
f
ul
nor
m
a
l
i
z
a
t
i
on
of
i
nput
f
e
a
t
ur
e
s
t
o
e
ns
ur
e
m
e
a
ni
ngf
ul
S
H
A
P
va
l
ue
s
.
4.
P
R
O
P
O
S
E
D
M
E
T
H
O
D
O
L
O
G
Y
T
he
F
ig
ur
e
1
il
lu
s
tr
a
te
s
th
e
a
r
c
hi
te
c
tu
r
e
of
a
phi
s
hi
ng
a
tt
a
c
k
de
te
c
ti
on
s
ys
te
m
us
in
g
e
xpl
a
in
a
bl
e
AI
.
L
e
t
us
br
e
a
k down how
t
hi
s
s
ys
te
m
w
or
ks
:
i)
e
xt
e
r
na
l
da
ta
s
our
c
e
s
:
phi
s
hi
ng
e
m
a
il
r
e
pos
it
or
ie
s
a
r
e
a
m
ong the
e
xt
e
r
na
l
da
ta
s
our
c
e
s
th
a
t
th
e
s
ys
te
m
c
ons
um
e
s
.
T
he
m
a
in
da
ta
s
e
t
us
e
d
to
tr
a
in
a
nd
e
va
lu
a
te
th
e
phi
s
hi
ng
a
tt
a
c
k
de
te
c
ti
on
m
ode
l
c
ons
i
s
ts
of
th
e
s
e
e
m
a
il
s
;
ii
)
e
m
a
il
da
ta
:
th
e
da
ta
s
e
t
of
phi
s
hi
ng
e
m
a
il
s
is
r
e
pr
e
s
e
nt
e
d
by
th
is
c
om
pone
nt
.
I
t
in
c
lu
de
s
a
va
r
ie
ty
of
c
ha
r
a
c
te
r
is
ti
c
s
a
nd
e
le
m
e
nt
s
th
a
t
w
e
r
e
ta
ke
n
f
r
om
th
e
s
e
e
m
a
il
s
,
in
c
lu
di
ng
m
e
ta
da
ta
,
e
m
be
dde
d
U
R
L
s
,
e
m
a
il
te
xt
,
a
nd
s
e
nde
r
in
f
or
m
a
ti
on
;
ii
i
)
f
e
a
tu
r
e
e
xt
r
a
c
ti
on:
th
e
s
ys
te
m
c
a
r
r
ie
s
out
f
e
a
tu
r
e
e
xt
r
a
c
ti
on
a
f
te
r
ga
th
e
r
in
g
th
e
e
m
a
il
d
a
ta
.
T
hi
s
pr
oc
e
dur
e
e
nt
a
il
s
f
or
m
a
tt
in
g
th
e
unpr
oc
e
s
s
e
d
e
m
a
il
da
ta
s
o
th
a
t
it
c
a
n
be
e
nt
e
r
e
d
in
to
th
e
m
a
c
hi
ne
le
a
r
ni
ng
m
ode
l.
E
m
a
il
f
e
a
tu
r
e
s
th
a
t
c
a
n
be
e
xt
r
a
c
te
d
in
c
lu
de
s
e
nde
r
r
e
put
a
ti
on
s
c
or
in
g,
U
R
L
a
na
ly
s
is
,
a
n
d
te
xt
ua
l
c
ont
e
nt
a
na
ly
s
is
;
iv
)
e
xpl
a
in
a
bl
e
A
I
m
ode
l:
a
n
e
xpl
a
in
a
bl
e
A
I
m
ode
l
is
th
e
n
f
e
d
th
e
f
e
a
tu
r
e
-
e
xt
r
a
c
te
d
da
ta
.
M
a
c
hi
ne
le
a
r
ni
ng
m
ode
ls
c
a
ll
e
d
"
e
xpl
a
in
a
bl
e
A
I
"
a
r
e
in
te
nde
d
to
pr
ovi
de
e
xpl
a
na
ti
ons
f
or
th
e
ir
de
c
is
io
ns
th
a
t
a
r
e
c
om
pr
e
he
n
s
ib
le
to
hum
a
ns
in
a
ddi
ti
on
to
p
r
oduc
in
g
pr
e
c
is
e
f
or
e
c
a
s
ts
.
T
hi
s
m
ode
l
le
a
r
ns
pa
tt
e
r
ns
a
nd
tr
a
it
s
ty
pi
c
a
l
of
phi
s
hi
ng
a
tt
a
c
ks
a
nd
e
xpl
a
in
s
w
hy
s
pe
c
if
ic
e
m
a
il
s
a
r
e
f
la
gge
d
a
s
l
e
gi
ti
m
a
te
o
r
phi
s
hi
ng
in
th
e
c
ont
e
xt
of
phi
s
hi
ng
a
tt
a
c
k
de
te
c
ti
on
;
v)
m
ode
l
in
te
r
pr
e
ta
ti
on:
to
c
om
pr
e
h
e
nd
th
e
lo
gi
c
unde
r
ly
in
g
th
e
pr
e
di
c
ti
on
s
m
a
de
by
th
e
e
xpl
a
in
a
bl
e
A
I
m
ode
l,
it
s
out
put
i
s
in
te
r
pr
e
te
d.
G
a
in
in
g
c
onf
id
e
nc
e
in
th
e
m
ode
l'
s
ju
dge
m
e
nt
s
a
nd
be
in
g
a
w
a
r
e
of
i
ts
a
dva
nt
a
ge
s
a
nd dis
a
dva
nt
a
g
e
s
ne
e
d
c
om
pl
e
ti
ng t
hi
s
s
te
p. T
e
c
hni
qu
e
s
f
or
i
nt
e
r
pr
e
ti
ng mode
ls
m
a
y
in
vol
ve
th
e
vi
s
ua
li
s
a
ti
on
of
de
c
is
io
n
bound
a
r
ie
s
,
f
e
a
tu
r
e
i
m
por
ta
nc
e
a
na
ly
s
i
s
,
a
nd
S
H
A
P
va
lu
e
s
;
a
nd
vi
)
d
e
c
is
io
n:
ul
ti
m
a
te
ly
,
a
de
te
r
m
in
a
ti
on
is
r
e
a
c
h
e
d
c
onc
e
r
ni
ng
th
e
c
a
t
e
gor
iz
a
ti
on
of
a
n
e
m
a
il
a
s
a
phi
s
hi
ng
a
tt
e
m
pt
or
not
,
c
ons
id
e
r
in
g
th
e
in
te
r
pr
e
ta
ti
ons
s
uppl
ie
d
by
th
e
m
ode
l.
T
hi
s
c
hoi
c
e
c
oul
d
r
e
s
ul
t
in
s
e
ve
r
a
l
di
f
f
e
r
e
nt
th
in
gs
ha
ppe
ni
ng,
li
ke
r
e
por
ti
ng
th
e
e
m
a
il
a
s
s
us
pi
c
io
us
,
pr
e
ve
nt
in
g
us
e
r
s
f
r
om
a
c
c
e
s
s
in
g e
m
be
dde
d
U
R
L
s
, or
not
if
yi
ng s
ys
te
m
a
dm
in
is
tr
a
to
r
s
.
I
n
s
um
m
a
r
y,
th
is
a
r
c
hi
te
c
tu
r
e
bui
ld
s
a
phi
s
hi
ng
a
s
s
a
ul
t
de
te
c
t
io
n
s
ys
te
m
th
a
t
not
onl
y
r
e
c
ogni
s
e
s
pos
s
ib
le
th
r
e
a
t
s
but
a
ls
o
pr
ovi
de
s
a
n
e
xpl
a
na
ti
on
f
or
th
e
ir
f
la
ggi
ng.
I
t
a
c
c
om
pl
is
he
s
th
is
by
c
om
bi
ni
ng
da
ta
ga
th
e
r
in
g,
f
e
a
tu
r
e
e
xt
r
a
c
ti
on,
m
a
c
hi
ne
le
a
r
ni
ng
m
ode
ll
in
g,
in
te
r
pr
e
ta
ti
on,
a
nd
de
c
is
io
n
-
m
a
ki
ng.
T
r
a
ns
p
a
r
e
nc
y
pl
a
ys
a
ke
y
r
ol
e
in
im
pr
ovi
ng
s
y
s
te
m
c
onf
id
e
nc
e
a
s
w
e
ll
a
s
e
na
bl
in
g
hum
a
n
m
oni
to
r
in
g
a
nd
a
c
ti
on
w
h
e
n
ne
e
de
d.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
S
N
:
2252
-
8938
I
nt
J
A
r
ti
f
I
nt
e
ll
,
V
ol
.
14
, N
o.
4
,
A
ugus
t
20
25
:
3022
-
3032
3028
F
ig
ur
e
1
.
A
r
c
hi
te
c
tu
r
e
f
or
in
te
r
p
r
e
ta
bl
e
m
a
c
hi
ne
l
e
a
r
ni
ng t
e
c
hni
que
s
f
or
phi
s
hi
ng a
tt
a
c
k de
te
c
ti
on
5.
C
H
A
L
L
E
N
G
E
S
A
N
D
F
U
T
U
R
E
D
I
R
E
C
T
I
O
N
S
5.
1.
I
d
e
n
t
i
f
i
c
at
i
on
o
f
c
h
a
ll
e
n
g
e
s
an
d
li
m
it
at
io
n
s
a
s
s
oc
ia
t
e
d
w
it
h
i
n
t
e
r
p
r
e
t
ab
le
m
a
c
h
in
e
l
e
a
r
n
in
g
t
e
c
h
n
iq
u
e
s
f
o
r
p
h
i
s
h
i
n
g
d
e
t
e
c
t
io
n
A
c
om
pr
e
he
ns
iv
e
r
e
vi
e
w
a
nd
a
n
a
ly
s
is
pr
ovi
de
s
a
th
or
ough
e
xa
m
in
a
ti
on
of
th
e
c
ha
ll
e
nge
s
a
nd
li
m
it
a
ti
ons
pe
r
ta
in
in
g
to
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
m
e
th
ods
w
he
n
a
ppl
ie
d
to
th
e
ta
s
k
of
ph
is
hi
ng
a
tt
a
c
k
de
te
c
ti
on.
W
hi
le
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
m
ode
ls
of
f
e
r
t
r
a
ns
pa
r
e
nc
y
a
nd
in
s
ig
ht
in
to
de
c
is
io
n
-
m
a
ki
ng
pr
oc
e
s
s
e
s
,
th
e
y
a
ls
o
f
a
c
e
s
e
ve
r
a
l
c
ha
ll
e
nge
s
a
nd
li
m
it
a
ti
ons
i
n
th
e
c
ont
e
xt
of
phi
s
hi
ng
d
e
te
c
ti
on
.
P
hi
s
hi
ng
a
tt
a
c
ks
of
te
n
in
vol
ve
c
om
pl
e
x
f
e
a
tu
r
e
s
s
uc
h
a
s
U
R
L
s
tr
uc
tu
r
e
,
H
T
M
L
c
ont
e
nt
,
a
nd
li
ngui
s
ti
c
pa
tt
e
r
ns
[
25]
.
F
or
in
s
ta
nc
e
,
de
te
c
ti
ng
s
ubt
le
va
r
ia
ti
ons
in
do
m
a
in
na
m
e
s
(
e
.g.,
"
pa
ypa
1.c
om
"
in
s
te
a
d
of
"
pa
ypa
l.
c
om
"
)
r
e
qui
r
e
s
m
ode
ls
t
o di
s
c
e
r
n nua
nc
e
d di
f
f
e
r
e
nc
e
s
, w
hi
c
h
c
a
n be
c
ha
ll
e
ngi
ng f
or
i
nt
e
r
pr
e
ta
bl
e
M
L
a
lg
or
it
hm
s
.
S
uppos
e
,
f
or
e
xa
m
pl
e
,
th
a
t
a
n
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
m
ode
l
m
a
r
ks
a
n
e
m
a
il
a
s
s
us
pi
c
io
us
be
c
a
us
e
it
c
ont
a
in
s
s
pe
c
if
ic
k
e
yw
or
ds
or
U
R
L
pa
tt
e
r
ns
[
26]
,
[
27]
.
I
t
m
ig
ht
,
how
e
ve
r
,
f
in
d
it
di
f
f
ic
ul
t
to
e
xpl
a
in
pr
e
c
is
e
ly
w
hy
th
e
c
la
s
s
if
ic
a
ti
on
ju
dge
m
e
nt
w
a
s
m
a
de
ba
s
e
d
on
th
e
s
e
f
e
a
tu
r
e
s
,
w
hi
c
h
w
oul
d
unde
r
m
in
e
th
e
de
te
c
ti
on
s
y
s
te
m
'
s
c
r
e
di
bi
li
ty
[
28]
.
W
hi
le
a
n
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
m
ode
l
ba
s
e
d
on
de
c
is
io
n t
r
e
e
s
m
a
y be
a
bl
e
t
o r
e
c
ogni
s
e
s
im
pl
e
phi
s
hi
ng a
tt
e
m
pt
s
w
it
h r
e
a
s
ona
bl
e
a
c
c
ur
a
c
y, i
t
m
a
y not be
a
bl
e
to
id
e
nt
if
y
m
or
e
c
om
pl
e
x
a
tt
a
c
k
s
th
a
t
c
a
ll
f
or
m
or
e
in
tr
ic
a
te
f
e
a
tu
r
e
in
te
r
a
c
ti
ons
.
O
n
th
e
ot
he
r
ha
nd,
in
tr
ic
a
te
e
ns
e
m
bl
e
m
ode
ls
s
uc
h
a
s
gr
a
di
e
nt
boos
ti
ng
c
oul
d
pr
ovi
de
be
tt
e
r
a
c
c
ur
a
c
y
but
a
r
e
not
a
s
c
om
pr
e
he
ns
ib
le
.
I
nt
e
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
t
e
c
hni
que
s
,
in
c
lu
di
ng
r
ul
e
-
ba
s
e
d
c
la
s
s
if
ie
r
s
,
m
a
y
not
be
a
bl
e
to
ke
e
p
up
w
it
h
th
e
in
c
r
e
a
s
in
g
c
om
pl
e
xi
ty
a
nd
di
ve
r
s
it
y
of
phi
s
hi
ng
a
tt
a
c
k
s
in
r
e
a
l
-
ti
m
e
,
w
hi
c
h
c
oul
d
c
a
us
e
de
la
ys
in
de
te
c
ti
on a
nd r
e
s
pons
e
.
P
hi
s
hi
ng
e
m
a
il
s
th
a
t
a
r
e
e
xpl
ic
it
ly
c
r
e
a
te
d
to
tr
ic
k
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
m
ode
ls
by
ta
m
pe
r
in
g
w
it
h
f
e
a
tu
r
e
s
th
a
t
a
r
e
c
r
uc
ia
l
to
c
a
te
gor
iz
a
ti
on
c
a
n
be
c
r
e
a
te
d
by
a
dve
r
s
a
r
ie
s
[
29]
,
[
30]
.
T
he
y
m
ig
ht
,
f
or
e
xa
m
pl
e
,
di
s
gui
s
e
h
a
r
m
f
ul
U
R
L
s
to
lo
ok
li
ke
s
a
f
e
one
s
to
a
voi
d
be
in
g
pi
c
ke
d
up
by
r
ul
e
-
ba
s
e
d
c
la
s
s
if
ie
r
s
.
W
h
e
n
a
ppl
ie
d
in
a
di
f
f
e
r
e
nt
or
ga
ni
s
a
ti
ona
l
c
ont
e
xt
w
it
h
di
s
ti
nc
t
phi
s
hi
ng
ta
c
ti
c
s
a
nd
pa
tt
e
r
n
s
,
a
n
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
m
ode
l
th
a
t
w
a
s
tr
a
in
e
d
on
a
pa
r
ti
c
ul
a
r
da
ta
s
e
t
c
ont
a
in
in
g
phi
s
hi
ng
e
xa
m
pl
e
s
f
r
om
a
pa
r
t
ic
ul
a
r
in
dus
tr
y
m
a
y
f
in
d
it
di
f
f
ic
ul
t
to
ge
ne
r
a
li
s
e
,
w
hi
c
h
w
il
l
r
e
duc
e
de
te
c
ti
on
a
c
c
ur
a
c
y
[
31]
,
[
32
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
nt
J
A
r
ti
f
I
nt
e
ll
I
S
S
N
:
2252
-
8938
A
c
om
pr
e
he
ns
iv
e
r
e
v
ie
w
of
i
nt
e
r
p
r
e
ta
bl
e
m
ac
hi
n
e
l
e
ar
ni
ng t
e
c
h
ni
que
s
f
or
phi
s
hi
ng
…
(
P
ank
aj
C
handr
e
)
3029
A
lt
hough
a
n
in
te
r
pr
e
ta
bl
e
m
a
c
hi
n
e
le
a
r
ni
ng
m
ode
l
m
a
y
of
f
e
r
ju
s
ti
f
ic
a
ti
ons
f
or
it
s
c
hoi
c
e
s
,
non
-
pr
of
e
s
s
io
na
l
us
e
r
s
m
a
y
s
ti
ll
f
in
d
it
di
f
f
ic
ul
t
to
unde
r
s
t
a
nd
a
nd
r
e
ly
on
th
e
s
e
ju
s
ti
f
ic
a
ti
ons
,
pa
r
ti
c
ul
a
r
ly
in
th
e
c
a
s
e
of
in
tr
ic
a
te
f
e
a
tu
r
e
in
te
r
a
c
ti
ons
or
w
he
n
th
e
m
ode
l'
s
lo
gi
c
de
vi
a
te
s
f
r
om
hum
a
n
in
tu
it
io
n
[
33]
,
[
34]
.
F
or
e
xa
m
pl
e
,
s
pe
c
if
ic
e
xpe
r
ti
s
e
in
m
a
c
hi
ne
le
a
r
ni
ng
a
nd
c
ybe
r
s
e
c
ur
it
y
m
a
y
be
ne
e
de
d
to
unde
r
s
ta
nd
th
e
m
e
a
ni
ng
of
s
pe
c
if
ic
l
in
gui
s
ti
c
c
ue
s
or
H
T
M
L
e
le
m
e
nt
s
i
n phis
hi
ng e
m
a
il
s
.
5.2
.
E
x
p
l
o
r
a
t
i
on
o
f
p
ot
e
n
t
i
al
f
u
t
u
r
e
r
e
s
e
a
r
c
h
d
i
r
e
c
t
io
n
s
t
o
a
d
d
r
e
s
s
t
h
e
s
e
c
h
a
ll
e
n
g
e
s
a
n
d
i
m
p
r
o
v
e
d
e
t
e
c
t
i
on
a
c
c
u
r
a
c
y
an
d
in
t
e
r
p
r
e
t
ab
il
it
y
5.2.1.
H
yb
r
id
m
od
e
ls
B
y
in
te
gr
a
ti
ng
m
a
c
hi
ne
le
a
r
ni
ng
w
it
h
c
onve
nt
io
na
l
r
ul
e
-
ba
s
e
d
te
c
hni
que
s
or
in
ve
s
ti
ga
ti
ng
th
e
in
te
gr
a
ti
on
of
s
e
ve
r
a
l
m
a
c
hi
ne
le
a
r
ni
ng
m
ode
ls
,
it
is
po
s
s
ib
l
e
to
c
a
pi
ta
li
s
e
on
th
e
a
dva
nt
a
ge
s
of
va
r
io
us
te
c
hni
que
s
a
nd
im
pr
ove
bot
h
in
te
r
p
r
e
ta
bi
li
ty
a
nd
a
c
c
ur
a
c
y.
R
e
s
e
a
r
c
h
on
e
xpl
a
in
a
bl
e
AI
te
c
hni
que
s
,
s
uc
h
S
H
A
P
va
lu
e
s
a
nd
L
I
M
E
,
c
a
n
s
he
d
li
ght
on
how
m
a
c
hi
ne
le
a
r
ni
ng
m
ode
ls
de
c
id
e
,
w
hi
c
h
w
il
l
in
c
r
e
a
s
e
c
onf
id
e
nc
e
a
nd
c
om
pr
e
he
n
s
io
n.
I
t
is
c
r
uc
ia
l
to
c
r
e
a
te
s
tr
ong
m
ode
ls
r
e
s
is
ta
nt
to
a
dv
e
r
s
a
r
ia
l
a
s
s
a
ul
ts
th
a
t
a
r
e
pa
r
ti
c
ul
a
r
to
phi
s
hi
ng
de
te
c
ti
on.
E
nha
nc
in
g
m
ode
l
r
obus
tn
e
s
s
a
ga
in
s
t
a
dve
r
s
a
r
ia
l
m
a
ni
pul
a
ti
ons
of
phi
s
hi
ng
e
m
a
il
s
or
w
e
bs
it
e
s
c
oul
d
be
th
e
f
oc
us
of
f
ut
u
r
e
r
e
s
e
a
r
c
h.
R
e
s
e
a
r
c
hi
ng
a
c
ti
ve
le
a
r
ni
ng
s
tr
a
te
gi
e
s
to
c
hoos
e
in
f
or
m
a
ti
ve
s
a
m
pl
e
s
f
or
m
ode
l
tr
a
in
in
g
in
a
c
le
ve
r
w
a
y
m
a
y
r
e
s
ul
t
in
be
tt
e
r
m
ode
l
pe
r
f
or
m
a
nc
e
a
nd
a
m
or
e
e
f
f
e
c
ti
ve
us
e
of
la
b
e
ll
e
d
da
ta
,
pa
r
ti
c
ul
a
r
ly
in
s
it
ua
ti
ons
w
he
r
e
t
he
r
e
is
a
s
hor
ta
ge
of
la
b
e
ll
e
d
da
ta
.
T
o
e
ns
ur
e
s
tr
ong
pe
r
f
or
m
a
nc
e
in
a
va
r
ie
ty
o
f
r
e
a
l
-
w
or
ld
s
e
tt
in
gs
,
r
e
s
e
a
r
c
h
e
nde
a
vour
s
ought
to
f
oc
us
on
im
pr
ovi
ng
th
e
m
ode
ls
'
c
a
pa
c
it
y t
o ge
ne
r
a
li
s
e
a
c
r
os
s
va
r
io
us
phi
s
hi
ng a
tt
a
c
k ki
nds
, doma
in
s
, a
nd l
a
ngu
a
ge
s
.
I
nve
s
ti
ga
ti
ng
te
c
hni
que
s
th
a
t
in
c
or
por
a
te
hum
a
n
knowle
dge
in
to
th
e
m
a
c
hi
ne
le
a
r
ni
ng
pi
pe
li
ne
c
a
n
ta
ke
a
dva
nt
a
g
e
of
th
e
a
dva
nt
a
g
e
s
of
bot
h
a
ut
om
a
te
d
a
lg
or
it
hm
s
a
nd
hum
a
n
in
tu
it
io
n,
e
nha
nc
in
g
th
e
ov
e
r
a
ll
in
te
r
pr
e
ta
bi
li
ty
a
nd
a
c
c
ur
a
c
y
of
de
te
c
ti
on.
I
t
is
c
r
it
ic
a
l
to
c
r
e
a
te
r
e
a
l
-
ti
m
e
de
te
c
ti
on
s
y
s
te
m
s
th
a
t
c
a
n
pr
om
pt
ly
r
e
c
ogni
s
e
a
nd
s
to
p
phi
s
hi
ng
a
s
s
a
ul
ts
a
s
s
oon
a
s
th
e
y
ha
ppe
n.
T
he
in
te
gr
a
ti
on
of
a
ut
om
a
ti
c
r
e
s
pons
e
m
e
c
ha
ni
s
m
s
a
nd
s
pe
e
d
opt
im
is
a
ti
on
of
m
ode
l
in
f
e
r
e
nc
e
c
oul
d
be
th
e
m
a
in
a
r
e
a
s
of
r
e
s
e
a
r
c
h.
I
t
is
c
r
it
ic
a
l
to
lo
ok
a
t
pr
iv
a
c
y
-
pr
e
s
e
r
vi
ng
m
a
c
hi
ne
le
a
r
ni
ng
m
e
th
ods
to
s
a
f
e
gua
r
d
pr
iv
a
te
us
e
r
da
ta
dur
in
g
th
e
tr
a
in
in
g
a
nd
in
f
e
r
e
nc
e
s
ta
ge
s
of
m
ode
l
s
, pa
r
ti
c
ul
a
r
ly
w
he
n i
t
c
om
e
s
t
o
s
it
ua
ti
ons
i
nvol
vi
ng s
ur
f
in
g or
pe
r
s
ona
l
e
m
a
il
da
ta
.
I
n
r
e
vi
e
w
in
g
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
te
c
hni
que
s
f
or
phi
s
hi
ng
a
tt
a
c
k
de
te
c
ti
on,
s
e
v
e
r
a
l
li
m
it
a
ti
ons
a
r
e
e
vi
de
nt
.
F
ir
s
tl
y,
m
a
ny
te
c
hni
que
s
s
ti
ll
s
tr
uggl
e
w
it
h
s
c
a
la
bi
li
ty
a
nd
e
f
f
ic
ie
nc
y
w
he
n
a
ppl
ie
d
to
la
r
ge
da
ta
s
e
ts
.
A
ddi
ti
ona
ll
y,
th
e
in
te
r
pr
e
ta
bi
li
ty
of
s
om
e
m
ode
ls
m
a
y
be
c
om
pr
om
is
e
d
in
c
om
pl
e
x
s
c
e
na
r
io
s
,
li
m
it
in
g
th
e
ir
pr
a
c
ti
c
a
l
ut
il
it
y.
F
ut
ur
e
r
e
s
e
a
r
c
h
s
houl
d
f
oc
us
on
im
pr
ovi
ng
th
e
s
c
a
la
bi
li
ty
of
in
te
r
pr
e
ta
ti
ve
m
e
th
ods
a
nd
de
ve
lo
pi
ng
t
e
c
hni
que
s
th
a
t
ba
la
nc
e
in
te
r
pr
e
ta
bi
li
ty
w
it
h
hi
gh
pe
r
f
or
m
a
nc
e
.
F
ur
th
e
r
e
xpl
or
a
ti
on
in
to
hybr
id
m
ode
ls
th
a
t
c
om
bi
ne
in
te
r
pr
e
ta
bi
li
ty
w
i
th
a
dv
a
nc
e
d
de
te
c
ti
on
c
a
pa
bi
li
ti
e
s
c
oul
d
e
nha
nc
e
e
f
f
e
c
ti
ve
ne
s
s
.
T
he
s
e
im
pr
ove
m
e
nt
s
w
il
l
ha
ve
s
ig
ni
f
ic
a
nt
im
pl
ic
a
ti
ons
f
or
c
r
e
a
ti
ng
m
or
e
r
e
li
a
bl
e
a
nd
us
e
r
-
f
r
ie
ndl
y phis
hi
ng de
te
c
ti
on s
ys
te
m
s
, ul
ti
m
a
te
ly
s
tr
e
ngt
he
ni
ng c
ybe
r
s
e
c
ur
it
y de
f
e
ns
e
s
.
6.
C
O
N
C
L
U
S
I
O
N
T
hi
s
c
om
pr
e
he
ns
iv
e
r
e
vi
e
w
hi
ghl
ig
ht
s
th
e
c
r
it
ic
a
l
r
ol
e
of
in
te
r
pr
e
ta
bl
e
m
a
c
hi
ne
le
a
r
ni
ng
te
c
hni
que
s
in
phi
s
hi
ng
a
tt
a
c
k
de
te
c
ti
on,
e
m
pha
s
iz
in
g
th
e
ne
e
d
f
or
tr
a
ns
pa
r
e
nc
y
a
nd
tr
us
twor
th
in
e
s
s
in
c
ybe
r
s
e
c
ur
it
y
s
ys
te
m
s
.
B
y a
na
ly
z
in
g va
r
io
us
m
ode
ls
s
uc
h a
s
r
ul
e
-
ba
s
e
d a
ppr
o
a
c
he
s
, de
c
is
io
n t
r
e
e
s
, a
nd a
ddi
ti
ve
m
ode
l
s
l
ik
e
S
H
A
P
,
th
e
s
tu
dy
de
m
ons
tr
a
te
s
how
in
te
r
pr
e
ta
bi
li
ty
e
nha
nc
e
s
de
te
c
ti
on
a
c
c
ur
a
c
y
w
hi
le
e
na
bl
in
g
hum
a
n
ove
r
s
ig
ht
.
T
he
f
in
di
ngs
unde
r
s
c
or
e
th
e
im
por
ta
nc
e
of
e
xpl
a
in
a
bl
e
A
I
in
im
pr
ovi
ng
phi
s
hi
ng
de
te
c
ti
on
c
a
pa
bi
li
ti
e
s
,
m
a
ki
ng
s
e
c
ur
it
y
s
ys
te
m
s
m
or
e
tr
a
ns
p
a
r
e
nt
a
n
d
tr
us
twor
th
y.
A
s
phi
s
hi
ng
ta
c
ti
c
s
be
c
om
e
in
c
r
e
a
s
in
gl
y
s
ophi
s
ti
c
a
te
d,
le
ve
r
a
gi
ng
in
te
r
pr
e
ta
bl
e
m
ode
ls
e
ns
ur
e
s
th
a
t
de
te
c
ti
on
de
c
i
s
io
ns
a
r
e
unde
r
s
ta
nda
bl
e
,
f
a
c
il
it
a
ti
ng
be
tt
e
r
de
c
is
io
n
-
m
a
ki
ng
by
s
e
c
ur
it
y
a
na
ly
s
ts
a
nd
e
nd
-
us
e
r
s
a
li
ke
.
D
e
s
pi
te
th
e
s
e
a
dva
nc
e
m
e
nt
s
,
s
e
v
e
r
a
l
c
ha
ll
e
nge
s
r
e
m
a
in
,
w
a
r
r
a
nt
in
g
f
ur
th
e
r
r
e
s
e
a
r
c
h.
F
ut
ur
e
e
f
f
or
ts
s
houl
d
f
oc
us
on
de
ve
lo
pi
ng
a
da
pt
iv
e
phi
s
hi
ng
de
te
c
ti
on
m
ode
ls
c
a
pa
bl
e
of
a
ut
om
a
ti
c
a
ll
y
le
a
r
ni
ng
a
nd
r
e
s
ponding
to
ne
w
a
tt
a
c
k
pa
tt
e
r
ns
w
hi
le
m
a
in
ta
in
in
g
in
te
r
pr
e
ta
bi
li
ty
.
I
nt
e
gr
a
ti
ng
e
xpl
a
in
a
bl
e
A
I
w
it
h
r
e
a
l
-
ti
m
e
de
te
c
ti
on
s
ys
te
m
s
,
e
s
p
e
c
ia
ll
y
in
dyna
m
ic
e
nvi
r
onm
e
nt
s
li
ke
s
oc
ia
l
m
e
d
ia
a
nd
c
or
por
a
te
ne
twor
ks
,
i
s
a
not
h
e
r
c
r
uc
ia
l
r
e
s
e
a
r
c
h a
ve
nue
. A
ddi
ti
ona
ll
y, e
nha
nc
in
g u
s
e
r
t
r
us
t
in
phi
s
hi
ng de
te
c
ti
on f
r
a
m
e
w
or
ks
t
hr
ough int
ui
ti
ve
m
ode
l
e
xpl
a
na
ti
ons
a
nd
in
te
r
a
c
ti
ve
vi
s
ua
li
z
a
ti
on
s
c
oul
d
im
pr
ove
a
dopt
io
n
a
nd
e
f
f
e
c
ti
ve
ne
s
s
.
A
ddr
e
s
s
in
g
th
e
s
e
c
ha
ll
e
nge
s
w
il
l
c
ont
r
ib
ut
e
to
th
e
de
ve
lo
pm
e
nt
of
m
or
e
r
obus
t
a
nd
tr
a
ns
pa
r
e
nt
phi
s
hi
ng
d
e
te
c
ti
on
s
y
s
te
m
s
,
s
tr
e
ngt
he
ni
ng c
ybe
r
s
e
c
ur
it
y de
f
e
ns
e
s
a
g
a
in
s
t
e
vol
vi
ng t
hr
e
a
ts
.
A
C
K
N
O
WL
E
D
G
M
E
N
T
S
T
he
a
ut
hor
s
w
oul
d
li
ke
to
e
xpr
e
s
s
th
e
ir
s
in
c
e
r
e
gr
a
ti
tu
de
to
M
I
T
A
r
t,
D
e
s
ig
n
a
nd
T
e
c
hnol
ogy
U
ni
ve
r
s
it
y,
P
une
,
I
ndi
a
,
f
or
pr
ovi
di
ng
th
e
ne
c
e
s
s
a
r
y
r
e
s
our
c
e
s
,
gui
da
nc
e
,
a
nd
s
uppor
t
th
r
oughout
th
e
c
our
s
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
S
N
:
2252
-
8938
I
nt
J
A
r
ti
f
I
nt
e
ll
,
V
ol
.
14
, N
o.
4
,
A
ugus
t
20
25
:
3022
-
3032
3030
of
th
is
r
e
s
e
a
r
c
h
w
or
k. T
he
ir
e
n
c
our
a
ge
m
e
nt
a
nd
a
c
a
de
m
ic
e
nvi
r
onm
e
nt
ha
ve
b
e
e
n
in
s
tr
um
e
nt
a
l
in
c
om
pl
e
ti
ng
th
is
s
tu
dy s
uc
c
e
s
s
f
ul
ly
.
F
U
N
D
I
N
G
I
N
F
O
R
M
A
T
I
O
N
A
ut
hor
s
s
ta
te
no f
undi
ng i
nvol
ve
d.
A
U
T
H
O
R
C
O
N
T
R
I
B
U
T
I
O
N
S
S
T
A
T
E
M
E
N
T
T
hi
s
jo
ur
na
l
us
e
s
th
e
C
ont
r
ib
ut
or
R
ol
e
s
T
a
xonomy
(
C
R
e
di
T
)
to
r
e
c
ogni
z
e
in
di
vi
dua
l
a
ut
hor
c
ont
r
ib
ut
io
ns
, r
e
duc
e
a
ut
hor
s
hi
p di
s
put
e
s
,
a
nd f
a
c
il
it
a
te
c
ol
la
bo
r
a
ti
on.
N
am
e
o
f
A
u
t
h
or
C
M
So
Va
Fo
I
R
D
O
E
Vi
Su
P
Fu
P
a
nka
j
C
ha
ndr
e
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
P
a
ll
a
vi
B
h
u
jb
a
l
✓
✓
✓
✓
A
s
hvi
ni
J
a
dha
v
✓
✓
✓
✓
✓
B
ha
gya
s
hr
e
e
D
in
e
s
h
S
he
ndka
r
✓
✓
✓
✓
✓
✓
A
di
ti
W
a
ngi
ka
r
✓
✓
✓
✓
✓
✓
✓
R
a
jn
e
e
s
hk
a
ur
S
a
c
hde
o
✓
✓
✓
✓
✓
✓
C
:
C
onc
e
pt
ua
l
i
z
a
t
i
on
M
:
M
e
t
hodol
ogy
So
:
So
f
t
w
a
r
e
Va
:
Va
l
i
da
t
i
on
Fo
:
Fo
r
m
a
l
a
na
l
ys
i
s
I
:
I
nve
s
t
i
ga
t
i
on
R
:
R
e
s
our
c
e
s
D
:
D
a
t
a
C
ur
a
t
i
on
O
:
W
r
i
t
i
ng
-
O
r
i
gi
na
l
D
r
a
f
t
E
:
W
r
i
t
i
ng
-
R
e
vi
e
w
&
E
di
t
i
ng
Vi
:
Vi
s
ua
l
i
z
a
t
i
on
Su
:
Su
pe
r
vi
s
i
on
P
:
P
r
oj
e
c
t
a
dm
i
ni
s
t
r
a
t
i
on
Fu
:
Fu
ndi
ng a
c
qui
s
i
t
i
on
C
O
N
F
L
I
C
T
O
F
I
N
T
E
R
E
S
T
S
T
A
T
E
M
E
N
T
T
he
r
e
i
s
no c
onf
li
c
t
of
i
nt
e
r
e
s
t.
D
A
T
A
A
V
A
I
L
A
B
I
L
I
T
Y
D
a
ta
a
v
a
il
a
bi
li
ty
i
s
no
t
a
p
pl
ic
a
bl
e
t
o t
hi
s
pa
p
e
r
a
s
no
ne
w
da
t
a
w
e
r
e
c
r
e
a
t
e
d or
a
na
ly
z
e
d i
n
t
hi
s
s
t
udy.
R
E
F
E
R
E
N
C
E
S
[
1]
V
.
K
.
R
a
ghu
e
t
al
.
,
“
F
e
a
s
i
bi
l
i
t
y
of
l
ung
c
a
nc
e
r
pr
e
di
c
t
i
on
f
r
om
l
ow
-
dos
e
C
T
s
c
a
n
a
nd
s
m
oki
ng
f
a
c
t
or
s
u
s
i
ng
c
a
u
s
a
l
m
ode
l
s
,”
T
hor
ax
, vol
. 74, no. 7, pp. 643
–
649, J
ul
. 2019, doi
:
10.1136/
t
hor
a
xj
nl
-
2018
-
212
638.
[
2]
T
.
Y
a
da
v
a
nd
R
.
S
a
c
hde
o
,
“
E
nha
nc
e
d
f
a
c
e
a
ge
pr
og
r
e
s
s
i
on
a
nd
r
e
gr
e
s
s
i
on
m
ode
l
us
i
ng
hype
r
-
pa
r
a
m
e
t
e
r
t
un
i
ng
-
l
a
r
ge
s
c
a
l
e
G
A
N
by
hybr
i
d
he
ur
i
s
t
i
c
i
m
pr
ove
m
e
nt
,”
T
he
I
m
agi
ng
Sc
i
e
nc
e
J
our
n
al
,
vol
.
72,
no.
8
,
S
e
p.
202
4,
doi
:
10.1080/
13682199.2023.2254134
.
[
3]
G
.
J
.
W
.
K
a
t
hr
i
ne
,
P
.
M
.
P
r
a
i
s
e
,
A
.
A
.
R
os
e
,
a
nd
E
.
C
.
K
a
l
a
i
va
ni
,
“
V
a
r
i
a
nt
s
of
phi
s
hi
ng
a
t
t
a
c
ks
a
nd
t
he
i
r
de
t
e
c
t
i
on
t
e
c
hni
que
s
,”
i
n
2019
3r
d
I
nt
e
r
nat
i
onal
C
onf
e
r
e
nc
e
on
T
r
e
nds
i
n
E
l
e
c
t
r
oni
c
s
and
I
nf
or
m
at
i
c
s
(
I
C
O
E
I
)
,
I
E
E
E
,
A
pr
.
2019,
pp.
255
–
259
,
doi
:
10.1109/
I
C
O
E
I
.2019.8862697.
[
4]
S
.
S
a
l
l
oum
,
T
.
G
a
be
r
,
S
.
V
a
d
e
r
a
,
a
nd
K
.
S
ha
a
l
a
n,
“
A
s
ys
t
e
m
a
t
i
c
l
i
t
e
r
a
t
ur
e
r
e
vi
e
w
on
phi
s
hi
ng
e
m
a
i
l
de
t
e
c
t
i
on
us
i
ng
na
t
ur
a
l
l
a
ngua
ge
pr
oc
e
s
s
i
ng t
e
c
hni
que
s
,”
I
E
E
E
A
c
c
e
s
s
, vol
. 10, pp. 65703
–
65727, 202
2, doi
:
10.1109/
A
C
C
E
S
S
.2022.3183083.
[
5]
R
.
J
.
V.
G
e
e
s
t
,
G
.
C
a
s
c
a
vi
l
l
a
,
J
.
H
ul
s
t
i
j
n,
a
nd
N
.
Z
a
nnone
,
“
T
he
a
ppl
i
c
a
bi
l
i
t
y
of
a
hyb
r
i
d
f
r
a
m
e
w
or
k
f
o
r
a
ut
om
a
t
e
d
phi
s
hi
ng
de
t
e
c
t
i
on,”
C
om
put
e
r
s
&
Se
c
u
r
i
t
y
, vol
. 139, A
pr
. 2024, doi
:
10.1016/
j
.c
os
e
.202
4.103736.
[
6]
S
.
M
a
kubha
i
,
G
.
R
.
P
a
t
ha
k,
a
nd
P
.
R
.
C
ha
ndr
e
,
“
P
r
e
ve
nt
i
on
i
n
he
a
l
t
hc
a
r
e
:
a
n
e
xpl
a
i
na
bl
e
A
I
a
ppr
oa
c
h,”
I
nt
e
r
nat
i
onal
J
our
nal
o
n
R
e
c
e
nt
and
I
nnov
at
i
on
T
r
e
nd
s
i
n
C
o
m
put
i
ng
and
C
om
m
uni
c
at
i
on
,
vol
.
11,
no.
5,
pp.
92
–
100,
M
a
y
2023
,
doi
:
10.17762/
i
j
r
i
t
c
c
.v11i
5.6582.
[
7]
E
.
J
.
W
i
l
l
i
a
m
s
a
nd
A
.
N
.
J
oi
ns
on,
“
D
e
ve
l
opi
ng
a
m
e
a
s
ur
e
of
i
nf
or
m
a
t
i
on
s
e
e
ki
ng
a
bout
phi
s
hi
ng,”
J
our
nal
of
C
y
be
r
s
e
c
u
r
i
t
y
,
vol
. 6, no. 1, J
a
n. 2020, doi
:
10.1093/
c
ybs
e
c
/
t
ya
a
001.
[
8]
M
.
K
honj
i
,
Y
.
I
r
a
qi
,
a
nd
A
.
J
one
s
,
“
P
hi
s
hi
ng
d
e
t
e
c
t
i
on:
a
l
i
t
e
r
a
t
ur
e
s
ur
ve
y,”
I
E
E
E
C
om
m
uni
c
at
i
ons
Sur
v
e
y
s
&
T
ut
or
i
al
s
,
vol
.
15,
no. 4, pp. 2091
–
2121, 2013, doi
:
10.1109/
S
U
R
V
.2013.032213.00009.
[
9]
K
.
D
e
m
e
r
t
z
i
s
a
nd
L
.
I
l
i
a
di
s
,
“
C
ogni
t
i
ve
w
e
b
a
ppl
i
c
a
t
i
on
f
i
r
e
w
a
l
l
t
o
c
r
i
t
i
c
a
l
i
nf
r
a
s
t
r
uc
t
ur
e
s
pr
ot
e
c
t
i
on
f
r
om
phi
s
hi
ng
a
t
t
a
c
ks
,
”
J
our
nal
of
C
om
put
at
i
ons
&
M
ode
l
l
i
ng
, vol
. 9, no. 2, pp. 1
–
26, 2019
.
[
10]
P
.
R
.
C
ha
ndr
e
,
P
.
N
.
M
a
ha
l
l
e
,
a
nd
G
.
R
.
S
hi
nde
,
“
M
a
c
hi
ne
l
e
a
r
ni
ng
ba
s
e
d
nove
l
a
ppr
oa
c
h
f
or
i
n
t
r
us
i
on
de
t
e
c
t
i
on
a
nd
pr
e
ve
nt
i
on
s
ys
t
e
m
:
a
t
ool
ba
s
e
d
ve
r
i
f
i
c
a
t
i
on,”
i
n
2018
I
E
E
E
G
l
obal
C
onf
e
r
e
nc
e
on
W
i
r
e
l
e
s
s
C
om
put
i
ng
and
N
e
t
w
o
r
k
i
ng
(
G
C
W
C
N
)
,
I
E
E
E
,
N
ov. 2018, pp. 135
–
140
, doi
:
10.1109/
G
C
W
C
N
.2018.8668618.
[
11]
J
.
G
i
ka
ndi
,
J
.
K
a
m
a
u,
D
.
N
j
uguna
,
a
nd
L
.
S
a
w
e
,
“
S
e
nt
e
nc
e
l
e
ve
l
a
n
a
l
ys
i
s
m
o
de
l
f
or
phi
s
hi
ng
de
t
e
c
t
i
on
us
i
ng
K
N
N
,”
J
ou
r
nal
of
C
y
be
r
Se
c
ur
i
t
y
, vol
. 6, no. 1, pp. 25
–
39, 2024, doi
:
10.32604/
j
c
s
.2023.045859.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
nt
J
A
r
ti
f
I
nt
e
ll
I
S
S
N
:
2252
-
8938
A
c
om
pr
e
he
ns
iv
e
r
e
v
ie
w
of
i
nt
e
r
p
r
e
ta
bl
e
m
ac
hi
n
e
l
e
ar
ni
ng t
e
c
h
ni
que
s
f
or
phi
s
hi
ng
…
(
P
ank
aj
C
handr
e
)
3031
[
12]
K
.
M
ol
a
y,
“
B
e
s
t
pr
a
c
t
i
c
e
s
f
or
w
e
bi
na
r
s
:
c
r
e
a
t
i
ng
e
f
f
e
c
t
i
ve
w
e
b
e
ve
nt
s
w
i
t
h
A
dobe
®
C
onne
c
t
™
,
”
W
hi
t
e
P
ape
r
,
pp.
1
-
14,
,
2009.
[
O
nl
i
ne
]
. A
va
i
l
a
bl
e
:
ht
t
ps
:
/
/
w
w
w
.c
l
a
r
i
x.c
om
/
w
hi
t
e
pa
pe
r
s
/
be
s
t
-
pr
a
c
t
i
c
e
s
-
w
e
bi
na
r
s
-
w
p.pdf
.
[
13]
G
.
H
.
M
ohi
t
h,
M
.
A
di
t
hya
,
G
.
P
.
S
,
a
nd
S
.
V
i
na
y,
“
D
e
ve
l
opm
e
nt
of
a
nt
i
-
phi
s
hi
ng
br
ow
s
e
r
ba
s
e
d
on
r
a
ndom
f
or
e
s
t
a
nd
r
ul
e
of
e
xt
r
a
c
t
i
on f
r
a
m
e
w
or
k,”
C
y
be
r
s
e
c
ur
i
t
y
, vol
. 3, no. 1, D
e
c
. 2020, doi
:
10.1186/
s
4
2400
-
020
-
00059
-
1.
[
14]
S
.
D
.
G
upt
t
a
,
K
.
T
.
S
ha
hr
i
a
r
,
H
.
A
l
qa
ht
a
ni
,
D
.
A
l
s
a
l
m
a
n,
a
nd
I
.
H
.
S
a
r
ke
r
,
“
M
ode
l
i
ng
hybr
i
d
f
e
a
t
ur
e
-
ba
s
e
d
phi
s
hi
ng
w
e
bs
i
t
e
s
de
t
e
c
t
i
on
us
i
ng
m
a
c
hi
ne
l
e
a
r
ni
ng
t
e
c
hni
qu
e
s
,”
A
nnal
s
of
D
at
a
Sc
i
e
nc
e
,
vol
.
11,
no.
1,
pp.
217
–
242,
F
e
b.
2024,
doi
:
10.1007/
s
40745
-
022
-
00379
-
8.
[
15]
S
.
P
a
l
i
a
t
h,
M
.
A
.
Q
be
i
t
a
h,
a
nd
M
.
A
l
dw
a
i
r
i
,
“
P
hi
s
hO
ut
:
e
f
f
e
c
t
i
ve
phi
s
hi
ng
de
t
e
c
t
i
on
u
s
i
ng
s
e
l
e
c
t
e
d
f
e
a
t
ur
e
s
,”
i
n
2020
27t
h
I
nt
e
r
nat
i
onal
C
onf
e
r
e
nc
e
on T
e
l
e
c
om
m
uni
c
at
i
ons
(
I
C
T
)
, I
E
E
E
, O
c
t
. 2020, pp.
1
–
5
, doi
:
10.1109/
I
C
T
49546.2020.9239589.
[
16]
B
.
B
.
G
upt
a
,
K
.
Y
a
da
v,
I
.
R
a
z
z
a
k,
K
.
P
s
a
nni
s
,
A
.
C
a
s
t
i
gl
i
one
,
a
nd
X
.
C
ha
ng
,
“
A
nove
l
a
ppr
oa
c
h
f
or
phi
s
hi
ng
U
R
L
s
de
t
e
c
t
i
o
n
us
i
ng l
e
xi
c
a
l
ba
s
e
d m
a
c
hi
ne
l
e
a
r
ni
ng i
n a
r
e
a
l
-
t
i
m
e
e
nvi
r
onm
e
nt
,”
C
om
put
e
r
C
om
m
uni
c
at
i
ons
, vol
. 175, pp. 47
–
57,
J
ul
. 2021, doi
:
10.1016/
j
.c
om
c
om
.2021.04.023.
[
17]
T
.
S
ut
t
e
r
,
A
.
S
.
B
oz
ki
r
,
B
.
G
e
hr
i
ng,
a
nd
P
.
B
e
r
l
i
c
h,
“
A
voi
di
ng
t
he
hook:
i
nf
l
ue
nt
i
a
l
f
a
c
t
or
s
of
phi
s
hi
ng
a
w
a
r
e
ne
s
s
t
r
a
i
ni
ng
o
n
c
l
i
c
k
-
r
a
t
e
s
a
nd
a
da
t
a
-
dr
i
ve
n
a
ppr
oa
c
h
t
o
pr
e
di
c
t
e
m
a
i
l
di
f
f
i
c
ul
t
y
pe
r
c
e
pt
i
on,”
I
E
E
E
A
c
c
e
s
s
,
vol
.
10,
pp.
100540
–
100565,
2022,
doi
:
10.1109/
A
C
C
E
S
S
.2022.3207272.
[
18]
S
.
K
.
P
uni
a
,
M
.
K
um
a
r
, T
.
S
t
e
pha
n,
G
.
G
.
D
e
ve
r
a
j
a
n,
a
nd
R
.
P
a
t
a
n,
“
P
e
r
f
or
m
a
nc
e
a
na
l
ys
i
s
of
m
a
c
hi
ne
l
e
a
r
ni
ng
a
l
gor
i
t
h
m
s
f
or
bi
g
da
t
a
c
l
a
s
s
i
f
i
c
a
t
i
on,”
I
nt
e
r
nat
i
onal
J
ou
r
nal
of
E
-
H
e
al
t
h
and
M
e
di
c
al
C
om
m
uni
c
at
i
ons
,
vol
.
12,
no.
4,
pp.
60
–
75,
J
ul
.
2021,
doi
:
10.4018/
I
J
E
H
M
C
.20210701.oa
4.
[
19]
L
.
L
i
u,
O
.
D
e
V
e
l
,
Q
.
-
L
.
H
a
n,
J
.
Z
ha
ng,
a
nd
Y
.
X
i
a
ng,
“
D
e
t
e
c
t
i
ng
a
nd
p
r
e
ve
nt
i
ng
c
ybe
r
i
ns
i
de
r
t
hr
e
a
t
s
:
a
s
ur
ve
y,”
I
E
E
E
C
om
m
uni
c
at
i
ons
Sur
v
e
y
s
&
T
ut
or
i
al
s
, vol
. 20, no. 2, pp. 1397
–
1417, 2018, doi
:
10.1109/
C
O
M
S
T
.2018.2800740.
[
20]
U
.
A
.
B
u
t
t
,
R
.
A
m
i
n,
H
.
A
l
da
b
ba
s
,
S
.
M
oh
a
n,
B
.
A
l
o
uf
f
i
,
a
n
d
A
.
A
h
m
a
di
a
n,
“
C
l
oud
-
b
a
s
e
d
e
m
a
i
l
ph
i
s
h
i
ng
a
t
t
a
c
k
us
i
ng
m
a
c
h
i
ne
a
nd
de
e
p
l
e
a
r
ni
ng
a
l
g
o
r
i
t
h
m
,”
C
om
pl
e
x
&
I
n
t
e
l
l
i
ge
n
t
Sy
s
t
e
m
s
,
vo
l
.
9,
n
o.
3,
pp
.
304
3
–
307
0,
20
23,
d
oi
:
1
0.
100
7/
s
407
47
-
0
22
-
0
07
60
-
3.
[
21]
L
.
R
i
be
i
r
o,
I
.
S
.
G
ue
de
s
,
a
nd
C
.
S
.
C
a
r
dos
o,
“
W
hi
c
h
f
a
c
t
or
s
pr
e
di
c
t
s
u
s
c
e
pt
i
bi
l
i
t
y
t
o
phi
s
hi
ng?
a
n
e
m
pi
r
i
c
a
l
s
t
udy,”
C
om
put
e
r
s
&
Se
c
ur
i
t
y
, vol
. 136, J
a
n. 2024, doi
:
10.1016/
j
.c
os
e
.2023.103558.
[
22]
A
.
A
.
O
r
uns
ol
u,
A
.
S
.
S
odi
ya
,
a
nd
A
. T
.
A
ki
nw
a
l
e
,
“
A
pr
e
di
c
t
i
ve
m
ode
l
f
o
r
ph
i
s
hi
ng
de
t
e
c
t
i
on,”
J
our
nal
of
K
i
ng
Saud
U
ni
v
e
r
s
i
t
y
-
C
om
put
e
r
and I
nf
or
m
at
i
on Sc
i
e
nc
e
s
, vol
. 34, no. 2, pp. 232
–
247, F
e
b. 2022, d
oi
:
10.1016/
j
.j
ks
uc
i
.2019.12.005.
[
23]
M
.
S
a
nc
he
z
-
P
a
ni
a
gua
,
E
.
F
.
F
e
r
na
nde
z
,
E
.
A
l
e
gr
e
,
W
.
A
l
-
N
a
bki
,
a
nd
V
.
G
onz
a
l
e
z
-
C
a
s
t
r
o,
“
P
hi
s
hi
ng
U
R
L
de
t
e
c
t
i
on:
a
r
e
a
l
-
c
a
s
e
s
c
e
na
r
i
o t
hr
ough l
ogi
n U
R
L
s
,
”
I
E
E
E
A
c
c
e
s
s
, vol
. 10, pp. 42949
–
42960, 2022,
doi
:
10.1109/
A
C
C
E
S
S
.2022.3168681.
[
24]
A
.
S
a
f
i
a
nd
S
.
S
i
ngh,
“
A
s
ys
t
e
m
a
t
i
c
l
i
t
e
r
a
t
ur
e
r
e
vi
e
w
on
phi
s
hi
ng
w
e
bs
i
t
e
de
t
e
c
t
i
on
t
e
c
hni
que
s
,”
J
our
nal
of
K
i
ng
Saud
U
ni
v
e
r
s
i
t
y
-
C
om
put
e
r
and I
nf
or
m
at
i
on Sc
i
e
nc
e
s
, vol
. 35, no. 2, pp. 590
–
611, F
e
b. 2023, d
oi
:
10.1016/
j
.j
ks
uc
i
.2023.01.004.
[
25]
G
. P
a
l
a
ni
a
ppa
n, S
. S
, B
. R
a
j
e
ndr
a
n, S
a
nj
a
y, S
. G
oya
l
,
a
nd B
. B
S
, “
M
a
l
i
c
i
ous
d
om
a
i
n de
t
e
c
t
i
on us
i
ng m
a
c
hi
ne
l
e
a
r
ni
ng on dom
a
i
n
na
m
e
f
e
a
t
ur
e
s
,
hos
t
-
ba
s
e
d
f
e
a
t
ur
e
s
a
nd
w
e
b
-
ba
s
e
d
f
e
a
t
ur
e
s
,”
P
r
oc
e
di
a
C
om
put
e
r
Sc
i
e
nc
e
,
vol
.
171,
pp.
654
–
661,
2020,
doi
:
10.1016/
j
.pr
oc
s
.2020.04.071.
[
26]
M
.
A
.
R
e
m
m
i
de
,
F
.
B
oum
a
hdi
,
N
.
B
ous
t
i
a
,
C
.
L
.
F
e
knou
s
,
a
nd
R
.
D
e
l
l
a
,
“
D
e
t
e
c
t
i
on
of
phi
s
hi
ng
U
R
L
s
u
s
i
ng
t
e
m
por
a
l
c
onvol
ut
i
ona
l
ne
t
w
or
k,”
P
r
oc
e
di
a C
om
put
e
r
S
c
i
e
nc
e
, vol
. 212, pp. 74
–
82, 2022
, doi
:
10.1016/
j
.pr
oc
s
.2022.10.209.
[
27]
C
.
O
pa
r
a
,
Y
.
C
he
n,
a
nd
B
.
W
e
i
,
“
L
ook
be
f
or
e
you
l
e
a
p:
de
t
e
c
t
i
ng
phi
s
hi
ng
w
e
b
pa
ge
s
by
e
xpl
oi
t
i
ng
r
a
w
U
R
L
a
nd
H
T
M
L
c
ha
r
a
c
t
e
r
i
s
t
i
c
s
,”
E
x
pe
r
t
Sy
s
t
e
m
s
w
i
t
h A
ppl
i
c
at
i
ons
, vol
. 236, F
e
b. 2024, doi
:
10.1016/
j
.e
s
w
a
.2023.121183.
[
28]
B
.
G
a
de
ka
r
a
nd
T
.
H
i
w
a
r
ka
r
,
“
A
pr
opos
e
d
bu
s
i
ne
s
s
i
m
pr
ove
m
e
nt
m
ode
l
ut
i
l
i
z
i
ng
m
a
c
hi
ne
l
e
a
r
ni
ng:
e
nha
n
c
i
ng
de
c
i
s
i
on
-
m
a
ki
ng
a
nd
pe
r
f
or
m
a
nc
e
,”
I
nt
e
r
nat
i
onal
J
our
nal
of
I
nt
e
l
l
i
ge
nt
Sy
s
t
e
m
s
and
A
ppl
i
c
at
i
ons
i
n
E
ngi
ne
e
r
i
ng
,
vol
.
12,
no.
1s
,
pp.
557
–
568,
2023
.
[
29]
B
. G
a
de
ka
r
a
nd T
. H
i
w
a
r
ka
r
, “
A
c
r
i
t
i
c
a
l
e
va
l
ua
t
i
on
of
bus
i
ne
s
s
i
m
pr
ove
m
e
nt
t
h
r
ough m
a
c
hi
ne
l
e
a
r
ni
ng:
c
ha
l
l
e
nge
s
, oppor
t
uni
t
i
e
s
,
a
nd
be
s
t
pr
a
c
t
i
c
e
s
,”
I
nt
e
r
nat
i
onal
J
our
nal
on
R
e
c
e
nt
and
I
nnov
at
i
on
T
r
e
nds
i
n
C
om
put
i
ng
and
C
om
m
uni
c
at
i
on
,
vol
.
11,
no.
10s
,
pp. 264
–
276, O
c
t
. 2023, doi
:
10.17762/
i
j
r
i
t
c
c
.v11i
10s
.7627.
[
30]
D
.
D
hot
r
e
,
P
.
R
.
C
ha
ndr
e
,
A
.
K
ha
nd
a
r
e
,
M
.
P
a
t
i
l
,
a
nd
G
.
S
.
G
a
w
a
nde
,
“
T
he
r
i
s
e
of
c
r
ypt
o
m
a
l
w
a
r
e
:
l
e
ve
r
a
gi
ng
m
a
c
hi
ne
l
e
a
r
ni
n
g
t
e
c
hni
que
s
t
o
und
e
r
s
t
a
nd
t
he
e
vol
ut
i
on,
i
m
pa
c
t
,
a
nd
de
t
e
c
t
i
on
of
c
r
ypt
oc
ur
r
e
nc
y
-
r
e
l
a
t
e
d
t
hr
e
a
t
s
,”
I
nt
e
r
nat
i
onal
J
ou
r
nal
on
R
e
c
e
n
t
and
I
nnov
at
i
on
T
r
e
nds
i
n
C
om
put
i
ng
and
C
om
m
uni
c
at
i
on
,
vol
.
11,
no.
7,
pp.
215
–
222,
S
e
p.
2023,
doi
:
10.17762/
i
j
r
i
t
c
c
.v11i
7.7848.
[
31]
J
.
G
.
K
ot
w
a
l
,
R
.
K
a
s
hya
p,
a
nd
P
.
M
.
S
ha
f
i
,
“
A
r
t
i
f
i
c
i
a
l
dr
i
vi
ng
ba
s
e
d
e
f
f
i
c
i
e
nt
ne
t
f
or
a
ut
om
a
t
i
c
pl
a
nt
l
e
a
f
di
s
e
a
s
e
c
l
a
s
s
i
f
i
c
a
t
i
on,
”
M
ul
t
i
m
e
di
a T
ool
s
and A
ppl
i
c
at
i
ons
, vol
. 83, no. 13, pp. 38209
–
38240, O
c
t
. 2023, doi
:
10.1007/
s
11042
-
023
-
16882
-
w.
[
32]
A
.
J
a
w
a
l
e
,
P
.
W
a
r
ol
e
,
S
.
B
ha
nda
r
e
,
K
.
B
ha
t
,
a
nd
P
.
R
.
C
h
a
ndr
e
,
“
J
e
e
vn
-
N
e
t
:
br
a
i
n
t
um
or
s
e
gm
e
nt
a
t
i
on
us
i
ng
c
a
s
c
a
de
d
U
-
N
e
t
&
ove
r
a
l
l
s
ur
vi
va
l
pr
e
di
c
t
i
on,”
I
nt
e
r
nat
i
onal
R
e
s
e
ar
c
h J
our
nal
of
E
ngi
ne
e
r
i
ng and T
e
c
hnol
ogy
, vol
. 7, no. 1, 2020
.
[
33]
S
.
A
s
hf
a
q,
S
.
A
.
P
a
t
i
l
,
S
.
B
or
de
,
P
.
C
ha
ndr
e
,
P
.
M
.
S
ha
f
i
,
a
nd
A
.
J
a
dha
v,
“
Z
e
r
o
t
r
us
t
s
e
c
ur
i
t
y
pa
r
a
di
gm
:
a
c
om
pr
e
he
ns
i
ve
s
ur
v
e
y
a
nd r
e
s
e
a
r
c
h a
na
l
y
s
i
s
,”
J
ou
r
nal
of
E
l
e
c
t
r
i
c
al
Sy
s
t
e
m
s
, vol
. 19, no. 2, pp. 28
–
37,
J
a
n. 2024, doi
:
10.52783/
j
e
s
.688.
[
34]
V
.
B
i
dve
e
t
al
.
,
“
U
s
e
of
e
xpl
a
i
na
bl
e
A
I
t
o
i
nt
e
r
pr
e
t
t
he
r
e
s
ul
t
s
of
N
L
P
m
ode
l
s
f
or
s
e
nt
i
m
e
nt
a
l
a
na
l
ys
i
s
,”
I
ndone
s
i
an
J
ou
r
nal
of
E
l
e
c
t
r
i
c
al
E
ngi
ne
e
r
i
ng and C
om
put
e
r
S
c
i
e
nc
e
, vol
. 35, no. 1, J
ul
. 2024, doi
:
10.11591/
i
j
e
e
c
s
.v35.i
1.pp511
-
519.
B
I
O
G
R
A
P
H
I
E
S
O
F
A
U
T
H
O
R
S
Dr.
Pankaj
Chandre
has
obtained
his
B.E
.
degree
in
Informati
on
Technology
from
Sant
Gadge
Baba
Amravati
University,
Amravati,
India,
M
.E.
degree
in
Computer
Engineering
from
Mumbai
University
Maharashtra,
India
in
the
year
2011
and
PhD
in
Computer
Enginee
ring
from
Savitriba
i
Phule
Pune
Universi
ty,
Pune,
I
ndia
in
the
year
2021.
He
is
currently
working
as
an
Associate
Professor
in
Department
of
Computer
Science
and
Engineering,
MIT
School
of
Computing,
MIT
ADT,
Pune,
India.
He
has
published
60
plus
papers
at
international
journals
and
conferences.
He
is
guiding
2
plu
s
PhD
research
scholar
at
MIT
Art
Design
and
T
echnology
University,
Pune,
India.
He
has
g
uided
more
than
30
plus
under
-
graduate
students
and
20
plus
postgraduate
students
for
proje
cts.
His
research
interests
are
network
security
and
information
security
.
He
can
b
e
contacted
at
email:
pankaj.chandre@mituniversity.edu.in or pankajchandre30@
gmail.com.
Evaluation Warning : The document was created with Spire.PDF for Python.