I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
pu
t
er
E
ng
ineering
(
I
J
E
CE
)
Vo
l.
15
,
No
.
5
,
Octo
b
er
20
25
,
p
p
.
4
7
4
0
~
4
7
5
0
I
SS
N:
2088
-
8
7
0
8
,
DOI
: 1
0
.
1
1
5
9
1
/ijece.
v
15
i
5
.
pp
4
7
4
0
-
4
7
5
0
4740
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ec
e.
ia
esco
r
e.
co
m
Co
mputer
v
isio
n
ba
sed sm
a
rt
o
v
er
speeding
v
ehicle
s
urv
eilla
nce
sy
stem
B
ud
ha
dity
a
B
ha
t
t
a
cha
rj
ee
,
P
ra
g
y
endra
,
B
o
o
pa
la
n
G
a
na
pa
t
hy
,
Sh
a
nm
ug
a
s
un
da
ra
m
M
.
S
c
h
o
o
l
o
f
E
l
e
c
t
r
o
n
i
c
s
En
g
i
n
e
e
r
i
n
g
,
V
e
l
l
o
r
e
I
n
st
i
t
u
t
e
o
f
T
e
c
h
n
o
l
o
g
y
,
V
e
l
l
o
r
e
,
I
n
d
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Dec
6
,
2
0
2
4
R
ev
is
ed
J
u
n
1
6
,
2
0
2
5
Acc
ep
ted
J
u
l 1
2
,
2
0
2
5
In
In
d
ia,
o
v
e
rs
p
e
e
d
in
g
c
a
u
se
s
m
o
re
th
a
n
6
0
%
o
f
d
e
a
th
s.
Th
e
re
fo
re
,
we
n
e
e
d
a
sy
ste
m
th
a
t
trac
k
s
th
e
m
e
d
ia
n
sp
e
e
d
o
f
c
a
rs
a
n
d
i
d
e
n
ti
fies
t
h
o
se
wh
o
re
g
u
larly
v
io
late
t
h
e
law
.
Ro
a
d
fa
talit
ies
c
a
n
b
e
re
d
u
c
e
d
a
s
a
re
su
lt
o
f
m
a
in
tain
in
g
law
a
n
d
o
r
d
e
r.
In
th
is
p
a
p
e
r,
we
p
re
se
n
t
a
n
e
m
b
e
d
d
e
d
sy
ste
m
th
a
t
c
a
n
re
a
d
t
h
e
l
ice
n
se
p
late
s
o
f
p
a
ss
in
g
c
a
rs
in
re
a
l
t
ime
.
Us
i
n
g
o
p
ti
c
a
l
c
h
a
ra
c
ter
re
c
o
g
n
it
io
n
tec
h
n
o
l
o
g
y
,
th
e
p
r
o
p
o
se
d
sy
ste
m
will
c
a
p
t
u
re
ima
g
e
s
o
f
li
c
e
n
se
p
late
s.
In
a
d
d
it
i
o
n
,
it
se
n
d
s
sh
o
r
t
m
e
ss
a
g
e
se
rv
ice
(S
M
S
)
n
o
ti
fica
ti
o
n
s
re
g
a
r
d
in
g
t
h
e
h
i
g
h
wa
y
sp
e
e
d
o
f
a
sp
e
c
ifi
c
m
o
v
in
g
v
e
h
icle
v
io
lati
n
g
th
e
r
u
les
t
o
t
h
e
re
lev
a
n
t
a
u
t
h
o
rit
ies
.
By
u
sin
g
t
h
is
t
e
c
h
n
iq
u
e
,
se
v
e
ra
l
m
a
n
u
a
l
o
p
e
ra
ti
o
n
s
th
a
t
we
re
p
re
v
io
u
sl
y
re
q
u
ired
t
o
d
e
t
e
c
t
o
v
e
r
-
sp
e
e
d
in
g
a
u
t
o
m
o
b
i
les
with
RAD
AR
g
u
n
s
a
re
e
li
m
in
a
ted
.
O
n
t
h
e
ro
a
d
wa
y
,
th
e
d
e
v
ice
c
a
n
o
n
l
y
b
e
o
p
e
ra
ted
b
y
o
n
e
o
p
e
ra
to
r
d
u
e
to
it
s
we
ll
-
d
e
v
e
lo
p
e
d
u
se
r
in
terfa
c
e
.
As
p
a
rt
o
f
t
h
is
wo
rk
,
a
d
o
wn
lo
a
d
a
b
le
d
a
tab
a
se
is
d
e
v
e
lo
p
e
d
wh
ich
in
c
l
u
d
e
s
i
n
fo
rm
a
ti
o
n
a
b
o
u
t
sp
e
e
d
i
n
g
v
e
h
icle
s
a
s
we
ll
a
s
v
e
h
icle
s
trav
e
ll
in
g
o
n
a
r
o
a
d
wa
y
a
t
t
h
e
m
o
m
e
n
t
th
e
y
a
re
d
e
tec
ted
.
K
ey
w
o
r
d
s
:
Data
b
ase
Nu
m
b
er
p
late
Op
tical
ch
ar
ac
ter
r
ec
o
g
n
itio
n
Sh
o
r
t m
ess
ag
e
s
er
v
ice
Su
r
v
eillan
ce
s
y
s
tem
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Sh
an
m
u
g
asu
n
d
ar
am
M
.
Sch
o
o
l o
f
E
lectr
o
n
ics E
n
g
i
n
ee
r
in
g
,
Vello
r
e
I
n
s
titu
te
o
f
T
ec
h
n
o
lo
g
y
Vello
r
e,
6
3
2
0
1
4
,
T
am
iln
ad
u
,
I
n
d
ia
E
m
ail: m
s
s
u
n
d
ar
am
v
it@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
Acc
o
r
d
in
g
to
g
o
v
er
n
m
e
n
t
s
tatis
tics
[
1
]
,
r
o
ad
tr
af
f
ic
ac
cid
e
n
t
s
in
I
n
d
ia
r
esu
lted
in
1
,
5
5
,
6
2
2
f
atalities
an
d
4
,
8
0
,
6
5
2
in
j
u
r
ies
in
2
0
2
2
.
T
h
e
n
u
m
b
er
o
f
in
j
u
r
ies
r
ep
o
r
t
ed
to
th
e
p
o
lice
is
lik
el
y
u
n
d
er
esti
m
ated
s
in
ce
n
o
t
all
in
ju
r
ies
ar
e
r
ep
o
r
ted
to
th
e
p
o
lice.
B
ased
o
n
v
ar
io
u
s
s
u
r
v
ey
s
,
th
e
r
o
ad
f
atality
r
ate
in
I
n
d
ia
p
e
r
1
,
0
0
0
,
0
0
0
in
h
ab
itan
ts
is
1
9
.
5
.
Fro
m
2
0
0
1
to
2
0
1
6
,
th
e
n
u
m
b
er
o
f
r
o
a
d
d
ea
th
s
in
c
r
ea
s
ed
b
y
r
o
u
g
h
l
y
7
%
p
e
r
y
ea
r
[
2
]
.
Fro
m
th
e
T
r
an
s
p
o
r
t
R
eso
u
r
ce
W
in
g
r
ep
o
r
t,
Fig
u
r
e
1
d
is
p
lay
s
th
e
to
tal
n
u
m
b
e
r
o
f
f
atalities
in
v
ar
io
u
s
s
tates
o
f
I
n
d
ia
d
u
r
in
g
2
0
2
1
.
R
ec
k
less
s
p
ee
d
in
g
ca
u
s
es
r
o
ad
d
ea
th
s
,
wh
ich
n
ee
d
to
b
e
a
d
d
r
ess
ed
.
L
a
ws
an
d
tech
n
o
lo
g
y
ca
n
b
e
u
s
ed
to
g
eth
er
to
r
ed
u
ce
h
ig
h
way
s
p
ee
d
in
g
’
s
d
ea
th
to
lls
p
er
y
ea
r
[
3
]
.
As
a
r
esu
lt
o
f
r
ec
eiv
in
g
a
s
h
o
r
t
m
ess
ag
e
s
er
v
ice
(
SMS)
aler
tin
g
p
o
lice
to
a
v
eh
icle
e
x
ce
ed
in
g
th
e
s
p
ee
d
lim
it
i
n
th
e
ir
p
atr
o
l
ar
ea
,
t
h
ey
ca
n
tak
e
s
wif
t
ac
tio
n
a
g
ain
s
t
th
e
o
f
f
en
d
er
.
Fu
r
t
h
er
m
o
r
e,
it
wo
u
ld
b
e
b
e
n
ef
icial
to
m
o
n
ito
r
wh
eth
e
r
v
eh
icles
v
io
late
s
p
ee
d
lim
its
o
n
th
e
r
o
a
d
.
T
h
e
r
e
g
io
n
al
tr
an
s
p
o
r
t
o
f
f
ice
(
R
T
O)
ca
n
in
v
esti
g
ate
cr
im
in
al
ac
tiv
ity
if
it
h
as
a
v
eh
icle'
s
n
u
m
b
er
p
late
[
4
]
.
On
ce
th
is
u
n
m
an
n
ed
s
y
s
tem
is
im
p
lem
en
ted
o
n
h
ig
h
way
s
,
ch
asin
g
d
o
wn
ca
r
s
ex
ce
ed
in
g
t
h
e
s
p
ee
d
lim
it
will
b
e
a
th
in
g
o
f
t
h
e
p
ast.
I
t
will
r
ed
u
ce
h
ig
h
way
p
atr
o
l
v
eh
icle
wo
r
k
f
o
r
ce
an
d
f
u
el
co
n
s
u
m
p
tio
n
[
5
]
.
W
ith
th
e
d
esig
n
ed
s
y
s
tem
,
tr
af
f
ic
p
o
lice
ca
n
s
ig
n
if
ica
n
tly
r
ed
u
ce
th
e
d
if
f
icu
lty
o
f
ca
tch
in
g
o
v
er
s
p
ee
d
in
g
v
e
h
icles.
I
t
will b
e
ea
s
y
f
o
r
t
h
e
p
o
lice
to
tak
e
n
ec
ess
ar
y
lawf
u
l
ac
tio
n
s
to
e
n
s
u
r
e
r
o
a
d
s
af
ety
a
n
d
k
ee
p
o
v
er
s
p
ee
d
in
g
to
a
m
i
n
im
u
m
wh
en
th
ey
r
ec
eiv
e
a
m
ess
ag
e
co
n
tain
i
n
g
t
h
e
ca
r
n
u
m
b
er
p
late
an
d
th
e
s
p
ee
d
at
wh
ich
it
was
tr
av
elin
g
[
6
]
.
Fu
r
th
er
m
o
r
e,
th
e
R
T
O
will
b
e
ab
le
to
m
o
n
ito
r
v
eh
icles
p
ass
in
g
th
r
o
u
g
h
th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
C
o
mp
u
ter visi
o
n
b
a
s
ed
s
ma
r
t
o
ve
r
s
p
ee
d
in
g
ve
h
icle
s
u
r
ve
illa
n
ce
s
ystem
(
B
u
d
h
a
d
itya
B
h
a
t
ta
ch
a
r
jee
)
4741
h
ig
h
way
a
n
d
th
eir
s
p
ee
d
s
with
d
atab
ases
o
f
all
v
eh
icles
m
o
v
in
g
o
n
th
e
h
ig
h
way
,
as
we
ll
as
th
o
s
e
th
at
ar
e
o
v
er
s
p
ee
d
in
g
[
7
]
.
Fig
u
r
e
1
.
T
o
tal
n
u
m
b
er
o
f
f
ata
liti
es b
y
s
ig
n
if
ican
t states
in
I
n
d
ia
d
u
r
in
g
2
0
2
1
T
h
e
au
to
m
atic
n
u
m
b
er
p
late
r
ec
o
g
n
izin
g
s
y
s
tem
(
ANPR
)
was
d
ev
elo
p
ed
b
y
th
e
B
r
itis
h
Po
lice
Scien
tific
Dev
elo
p
m
en
t
B
r
an
c
h
in
1
9
7
6
[
8
]
.
B
y
1
9
7
9
,
p
r
o
to
ty
p
e
s
y
s
tem
s
wer
e
wo
r
k
in
g
,
a
n
d
co
n
tr
ac
ts
wer
e
m
ad
e
to
p
r
o
d
u
ce
in
d
u
s
tr
ial
s
y
s
tem
s
,
f
ir
s
t
at
E
MI
E
lectr
o
n
ics,
an
d
th
en
at
c
o
m
p
u
ter
r
ec
o
g
n
itio
n
s
y
s
tem
s
(
C
R
S)
in
W
o
k
in
g
h
am
,
UK.
T
h
er
e
a
r
e
two
ty
p
es
o
f
ANP
R
s
y
s
tem
s
:
f
ix
ed
an
d
m
o
b
ile.
Fix
ed
s
y
s
tem
s
ar
e
in
s
talled
at
to
ll
b
o
o
th
s
,
b
o
r
d
er
cr
o
s
s
in
g
s
,
an
d
s
tr
ateg
ic
p
o
in
t
s
alo
n
g
h
ig
h
wa
y
s
[
9
]
.
I
n
a
m
o
b
ile
ANPR
s
y
s
tem
,
th
e
ANPR
s
y
s
tem
is
ca
r
r
ied
b
y
a
v
eh
icle.
Usi
n
g
it,
y
o
u
c
an
s
ca
n
th
e
n
u
m
b
er
p
lates
o
f
v
eh
icles.
T
r
ac
k
in
g
s
u
s
p
icio
u
s
v
eh
icles
is
d
o
n
e
b
y
p
o
lice
u
s
in
g
th
is
ap
p
r
o
ac
h
.
I
n
p
lace
s
lik
e
m
alls
,
h
ig
h
way
to
llg
ates,
an
d
f
o
r
s
ec
u
r
ity
p
u
r
p
o
s
es,
ANPR
s
y
s
tem
s
ar
e
u
s
ed
to
tr
ac
k
v
is
i
tin
g
v
eh
icles.
On
h
i
g
h
way
s
,
s
p
ee
d
d
etec
tio
n
is
tr
ad
itio
n
ally
d
o
n
e
b
y
R
ADAR
g
u
n
s
,
as sh
o
wn
in
Fig
u
r
e
2
,
wh
er
e
au
th
o
r
ize
d
p
er
s
o
n
n
el
p
o
i
n
t th
e
g
u
n
to
war
d
a
m
o
v
in
g
v
e
h
icle
s
u
s
p
ec
ted
o
f
s
p
ee
d
in
g
[
1
0
]
.
Fo
r
th
is
in
v
esti
g
atio
n
,
n
u
m
b
er
p
late
r
ec
o
g
n
itio
n
was
n
o
t
u
s
ed
.
Fu
r
th
er
m
o
r
e
,
th
e
p
o
lice
s
h
o
u
l
d
tr
y
to
ca
tch
u
p
with
th
e
v
e
h
icle.
I
n
o
th
er
p
ar
ts
o
f
I
n
d
ia,
s
p
ee
d
d
etec
tio
n
is
b
ased
o
n
im
ag
e
p
r
o
ce
s
s
in
g
,
b
u
t
ag
ain
n
o
ANPR
co
u
ld
b
e
i
m
p
lem
en
ted
[
1
1
]
.
W
h
en
a
r
e
d
lig
h
t
is
f
lash
in
g
,
p
o
lice
ex
am
in
e
t
h
e
ca
p
tu
r
ed
i
m
ag
e
to
f
in
d
th
e
ca
r
.
Fig
u
r
e
2
.
R
ad
ar
g
u
n
s
to
d
etec
t
v
eh
icle
s
p
ee
d
Alg
o
r
ith
m
s
in
c
o
m
p
u
te
r
v
is
io
n
an
d
ch
ar
ac
te
r
r
ec
o
g
n
itio
n
p
lay
an
im
p
o
r
tan
t
r
o
le
in
n
u
m
b
er
p
late
r
ec
o
g
n
itio
n
a
n
d
id
en
tific
atio
n
[
1
2
]
,
[
1
3
]
.
T
h
e
p
r
o
p
o
s
ed
m
e
th
o
d
wo
u
ld
elim
in
ate
all
ef
f
o
r
ts
to
en
s
u
r
e
r
o
ad
s
af
ety
an
d
f
o
llo
w
laws.
T
h
e
s
y
s
tem
d
etec
ts
s
p
ee
d
au
t
o
m
at
ically
,
an
d
th
e
n
u
m
b
er
p
late
ch
ec
k
s
if
t
h
e
s
p
ee
d
ex
ce
ed
s
th
e
lim
it
[
1
4
]
.
I
t
m
ain
tain
s
a
d
atab
ase
o
f
v
eh
icles
f
o
r
th
e
s
tate
R
T
O
to
u
s
e
in
th
e
f
u
tu
r
e.
W
h
en
ev
e
r
a
v
eh
icle
is
s
p
o
tted
s
p
ee
d
in
g
a
n
d
SMS
will
b
e
s
en
t
to
th
e
n
ea
r
est
p
o
lice
s
tatio
n
[
1
5
]
.
I
n
th
is
way
,
a
v
e
h
icle
ca
n
b
e
s
to
p
p
e
d
at
th
e
n
e
x
t
ch
ec
k
p
o
in
t
o
r
to
ll
g
ate
o
n
th
e
h
ig
h
wa
y
to
ta
k
e
th
e
r
eq
u
ir
ed
lawf
u
l
a
ctio
n
[
1
6
]
.
T
ab
le
1
illu
s
tr
ates th
e
co
m
p
ar
ativ
e
an
a
ly
s
is
o
f
v
ar
io
u
s
ex
is
tin
g
m
et
h
o
d
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
5
,
Octo
b
e
r
20
25
:
4
7
4
0
-
4
7
5
0
4742
T
ab
le
1
.
C
o
m
p
a
r
is
o
n
t
ab
le
Ref
M
e
t
h
o
d
o
l
o
g
y
Ex
t
r
a
c
t
i
o
n
S
e
g
m
e
n
t
a
t
i
o
n
R
e
c
o
g
n
i
t
i
o
n
D
a
t
a
b
a
s
e
I
mag
e
f
e
a
t
u
r
e
A
c
c
u
r
a
c
y
(
%)
R
e
a
l
-
t
i
m
e
N
u
mb
e
r
p
l
a
t
e
F
o
r
m
a
t
[
1
7
]
C
N
N
,
M
o
b
i
l
e
N
e
t
,
R
e
sN
e
t
A
LPD
R
mo
d
e
l
C
o
n
t
o
u
r
s
H
a
a
r
c
a
sca
d
e
I
n
d
i
a
n
Li
c
e
n
s
e
p
l
a
t
e
d
a
t
a
se
t
V
a
r
i
o
u
s
c
o
n
d
i
t
i
o
n
s
8
9
.
5
x
I
n
d
i
a
n
[
1
8
]
AI
O
p
e
n
C
V
a
n
d
P
y
t
h
o
n
l
i
b
r
a
r
y
py
-
t
e
ss
e
r
a
c
t
p
a
c
k
a
g
e
Te
mp
l
a
t
e
mat
c
h
i
n
g
V
a
r
i
o
u
s
i
ma
g
e
s
B
a
c
k
d
r
o
p
l
i
g
h
t
e
n
i
n
g
8
4
.
3
x
r
a
n
d
o
m
[
1
9
]
D
e
e
p
Le
a
r
n
i
n
g
P
i
x
e
l
P
r
o
j
e
c
t
i
o
n
i
n
V
e
r
t
i
c
a
l
a
n
d
H
o
r
i
z
o
n
t
a
l
d
i
r
e
c
t
i
o
n
s
C
l
o
se
d
c
u
r
v
e
s
Te
mp
l
a
t
e
M
a
t
c
h
i
n
g
7
6
5
0
i
ma
g
e
s
V
a
r
i
o
u
s
l
i
g
h
t
e
n
i
n
g
c
o
n
d
i
t
i
o
n
s
8
7
.
3
6
I
n
d
i
a
n
[
2
0
]
C
o
m
p
u
t
e
r
v
i
s
i
o
n
a
n
d
M
L
,
R
e
s
N
e
t
B
o
u
n
d
i
n
g
b
o
x
V
e
r
t
i
c
a
l
e
d
g
e
d
e
t
e
c
t
i
o
n
Te
mp
l
a
t
e
M
a
t
c
h
i
n
g
A
O
LP
d
a
t
a
se
t
V
a
r
i
o
u
s
c
o
n
d
i
t
i
o
n
s
8
2
.
6
x
S
p
a
i
n
[
2
1
]
R
-
C
N
N
F
e
a
t
u
r
e
e
x
t
r
a
c
t
i
o
n
C
h
a
r
a
c
t
e
r
seg
m
e
n
t
a
t
i
o
n
O
p
t
i
c
a
l
c
h
a
r
a
c
t
e
r
r
e
c
o
g
n
i
t
i
o
n
(
O
C
R
)
me
t
h
o
d
1
2
6
0
i
ma
g
e
s
B
a
c
k
d
r
o
p
l
i
g
h
t
e
n
i
n
g
8
6
.
7
x
I
n
d
i
a
n
[
2
2
]
V
i
si
o
n
A
ssi
st
e
d
P
l
a
n
e
e
x
t
r
a
c
t
i
o
n
B
a
c
k
g
r
o
u
n
d
su
b
t
r
a
c
t
i
o
n
R
e
g
i
o
n
o
f
i
n
t
e
r
e
s
t
(
R
O
I
)
7
3
0
i
ma
g
e
s
V
a
r
i
o
u
s
l
i
g
h
t
e
n
i
n
g
c
o
n
d
i
t
i
o
n
s
8
1
.
5
I
n
d
i
a
n
[
2
3
]
Y
o
l
o
V
5
F
e
a
t
u
r
e
e
x
t
r
a
c
t
i
o
n
P
l
a
t
e
seg
m
e
n
t
a
t
i
o
n
O
C
R
m
e
t
h
o
d
5
0
0
i
ma
g
e
s
I
n
d
i
a
n
l
i
g
h
t
e
n
i
n
g
c
o
n
d
i
t
i
o
n
s
7
9
.
8
4
I
n
d
i
a
n
[
2
4
]
C
o
m
p
u
t
e
r
v
i
s
i
o
n
R
G
B
e
x
t
r
a
c
t
o
r
C
l
o
se
d
c
u
r
v
e
s
O
C
R
a
p
p
r
o
a
c
h
1
3
5
0
i
ma
g
e
s
D
i
f
f
e
r
e
n
t
t
i
m
i
n
g
s
a
n
d
d
i
s
t
a
n
c
e
s
8
4
.
6
I
n
d
i
a
n
[
2
5
]
Y
o
l
o
v
8
a
n
d
Ea
sy
O
C
R
F
e
a
t
u
r
e
e
x
t
r
a
c
t
i
o
n
P
l
a
t
e
seg
m
e
n
t
a
t
i
o
n
O
C
R
a
p
p
r
o
a
c
h
V
a
r
i
o
u
s
i
ma
g
e
s
V
a
r
i
o
u
s
c
o
n
d
i
t
i
o
n
s
9
1
.
8
7
I
n
d
i
a
n
2.
P
RO
P
O
SE
D
M
E
T
H
O
D
R
ed
u
cin
g
r
o
ad
ac
cid
en
ts
an
d
en
f
o
r
cin
g
tr
af
f
ic
laws
o
n
I
n
d
ian
h
ig
h
wa
y
s
is
a
cr
itica
l
p
r
io
r
ity
.
Ho
wev
er
,
o
v
er
s
p
ee
d
in
g
v
eh
i
cles
o
f
ten
ev
ad
e
i
n
ter
ce
p
tio
n
b
y
p
o
lice
o
r
h
ig
h
wa
y
p
at
r
o
l
d
u
e
t
o
lim
ited
en
f
o
r
ce
m
e
n
t
ca
p
ab
ilit
ies
an
d
in
s
u
f
f
icien
t
in
f
r
astru
ctu
r
e.
T
h
e
p
r
o
p
o
s
ed
s
y
s
tem
ad
d
r
ess
es
th
is
g
ap
b
y
ac
cu
r
ately
d
etec
tin
g
v
e
h
icles th
at
ex
ce
ed
s
p
ee
d
lim
its
an
d
au
to
m
atica
lly
aler
tin
g
n
ea
r
b
y
en
f
o
r
ce
m
en
t u
n
its
f
o
r
tim
ely
in
ter
v
en
tio
n
.
T
h
is
en
ab
les
p
atr
o
l
team
s
at
in
ter
m
ed
iate
ch
ec
k
p
o
in
ts
to
s
to
p
v
io
lato
r
s
an
d
ta
k
e
ap
p
r
o
p
r
iate
ac
tio
n
.
T
o
ac
h
ie
v
e
th
is
f
u
n
ctio
n
ality
,
th
e
s
y
s
tem
is
s
tr
u
ctu
r
ed
in
t
o
f
o
u
r
k
e
y
m
o
d
u
les.
I
t
e
m
p
lo
y
s
a
co
m
b
in
atio
n
o
f
OC
R
-
b
ased
au
to
m
atic
n
u
m
b
er
p
late
r
ec
o
g
n
izin
g
s
y
s
tem
(
ANPR
)
an
d
s
p
ee
d
d
etec
tio
n
alg
o
r
ith
m
s
.
W
h
en
a
v
e
h
icle
p
ass
es
s
en
s
o
r
1
,
a
ca
m
er
a
ca
p
t
u
r
es
its
im
ag
e
an
d
ex
tr
ac
ts
th
e
r
eg
is
tr
atio
n
n
u
m
b
er
u
s
in
g
OC
R
tech
n
iq
u
es.
Up
o
n
r
ea
ch
in
g
s
en
s
o
r
2
,
th
e
c
o
n
tr
o
ller
ca
lcu
lates
th
e
v
eh
icle’
s
s
p
ee
d
b
ased
o
n
t
h
e
tim
e
tak
en
to
t
r
av
el
b
etwe
en
th
e
two
s
en
s
o
r
s
.
I
f
th
e
v
e
h
icle
is
f
o
u
n
d
to
b
e
o
v
er
s
p
ee
d
in
g
,
an
SMS
aler
t
is
g
en
er
ated
a
n
d
s
en
t
to
th
e
n
ea
r
est
R
T
O
v
ia
a
g
lo
b
al
s
y
s
tem
f
o
r
m
o
b
ile
co
m
m
u
n
icatio
n
s
(
GSM)
m
o
d
u
le,
a
n
d
th
e
ev
en
t is lo
g
g
e
d
in
a
ce
n
tr
al
d
atab
ase.
T
h
e
p
r
o
ce
s
s
is
illu
s
t
r
ated
in
Fig
u
r
e
3
.
Un
lik
e
co
n
v
en
tio
n
al
R
ADAR
g
u
n
s
etu
p
s
,
wh
ich
co
s
t
b
etwe
en
₹
1
.
5
to
₹
3
lak
h
s
p
er
u
n
it
a
n
d
r
eq
u
ir
e
co
n
s
tan
t
m
an
p
o
wer
,
th
is
s
y
s
t
em
is
h
ig
h
ly
co
s
t
-
ef
f
ec
tiv
e.
T
h
e
p
r
o
to
ty
p
e
,
co
m
p
r
is
in
g
u
l
tr
aso
n
ic
s
en
s
o
r
s
,
a
web
ca
m
,
a
GSM
m
o
d
u
le,
a
m
icr
o
co
n
tr
o
ller
,
an
d
b
asic
co
m
p
u
tin
g
c
o
m
p
o
n
en
ts
,
ca
n
b
e
b
u
ilt
f
o
r
₹
1
2
,
0
0
0
to
₹
1
5
,
0
0
0
,
with
p
o
ten
tial
co
s
t
r
ed
u
ctio
n
s
in
lar
g
e
-
s
ca
l
e
im
p
lem
en
tatio
n
s
.
Fu
r
th
er
m
o
r
e,
it
o
p
er
ates
au
to
n
o
m
o
u
s
ly
2
4
/7
,
elim
in
ati
n
g
th
e
n
ee
d
f
o
r
c
o
n
tin
u
o
u
s
h
u
m
an
s
u
p
er
v
is
io
n
an
d
s
ig
n
if
ica
n
tly
r
ed
u
cin
g
lo
n
g
-
ter
m
co
s
ts
r
elate
d
to
s
taf
f
in
g
,
p
atr
o
l f
u
el,
an
d
e
q
u
ip
m
e
n
t m
a
in
ten
an
ce
.
2
.
1
.
O
ptic
a
l c
ha
ra
ct
er
re
c
o
g
nitio
n
T
h
e
ce
n
tr
al
task
o
f
th
e
wo
r
k
is
to
d
etec
t
th
e
n
u
m
b
er
p
late
o
f
th
e
ca
r
f
r
o
m
th
e
ca
p
tu
r
ed
im
ag
e.
I
n
ad
d
itio
n
,
it
co
n
v
er
ts
th
e
ch
ar
a
cter
s
in
th
e
n
u
m
b
e
r
p
late
in
to
s
tr
in
g
d
ata
f
o
r
f
u
r
th
e
r
p
r
o
ce
s
s
in
g
.
Af
ter
r
e
p
ea
ted
tr
ain
in
g
alg
o
r
ith
m
s
,
ch
ar
ac
te
r
s
ar
e
co
n
v
er
ted
to
s
tr
in
g
s
in
th
e
g
iv
en
R
OI
.
2
.
2
.
O
bs
t
a
cle
det
ec
t
i
o
n m
ec
ha
nis
m
Dete
ctin
g
v
eh
icle
p
r
esen
ce
twice
is
th
e
n
ex
t
s
tep
in
th
is
wo
r
k
.
I
n
th
is
way
,
s
p
ee
d
ca
n
b
e
ca
lcu
lated
b
ased
o
n
th
e
tim
e
g
ap
b
etwe
en
d
etec
tio
n
s
.
As
a
r
esu
lt
o
f
t
h
e
f
ir
s
t
s
en
s
o
r
's
d
etec
tio
n
,
a
s
ig
n
al
is
s
en
t
to
th
e
ca
m
er
a
to
ca
p
tu
r
e
th
e
n
u
m
b
er
p
late
o
f
th
e
v
eh
icle.
T
h
e
w
o
r
k
in
v
o
lv
es
co
n
v
er
tin
g
ch
ar
ac
t
er
s
in
an
im
ag
e
in
to
s
tr
in
g
v
ar
ia
b
les.
Nu
m
er
o
u
s
a
lg
o
r
ith
m
s
h
a
v
e
b
ee
n
p
r
o
p
o
s
e
d
f
o
r
d
etec
tin
g
n
u
m
b
er
p
late
s
u
s
in
g
OC
R
.
T
h
e
s
y
s
tem
d
etec
ts
n
u
m
b
er
p
late
c
h
ar
ac
ter
s
in
two
way
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
C
o
mp
u
ter visi
o
n
b
a
s
ed
s
ma
r
t
o
ve
r
s
p
ee
d
in
g
ve
h
icle
s
u
r
ve
illa
n
ce
s
ystem
(
B
u
d
h
a
d
itya
B
h
a
t
ta
ch
a
r
jee
)
4743
T
h
er
e
ar
e
two
wa
y
s
to
d
o
it:
a.
W
h
en
ev
er
an
im
ag
e
is
ca
p
tu
r
e
d
,
th
e
r
eg
io
n
o
f
i
n
ter
est
m
u
s
t
b
e
m
an
u
ally
s
elec
ted
t
o
en
s
u
r
e
h
ig
h
ac
cu
r
ac
y
.
E
v
en
s
o
,
an
em
p
lo
y
ee
m
u
s
t
m
an
u
ally
s
elec
t
th
e
R
OI
wh
e
n
ev
er
an
im
ag
e
ap
p
ea
r
s
o
n
th
e
User
I
n
ter
f
ac
e
(
UI
)
.
b.
Nu
m
b
er
p
late
lo
ca
lizatio
n
u
s
in
g
au
to
m
atic
d
etec
tio
n
o
f
n
u
m
b
er
p
late
ch
a
r
ac
ter
s
with
o
u
t
h
u
m
an
in
ter
v
en
tio
n
.
T
o
s
cr
ap
e
o
u
t
t
h
e
n
u
m
b
er
p
late
ch
a
r
ac
ter
s
,
m
an
y
im
ag
e
p
r
o
ce
s
s
in
g
alg
o
r
ith
m
s
ar
e
u
s
ed
,
wh
ich
r
ed
u
ce
s
ac
cu
r
ac
y
.
T
h
is
m
eth
o
d
tak
es
in
to
ac
co
u
n
t
illu
m
in
atio
n
,
n
u
m
b
er
p
late
b
ac
k
g
r
o
u
n
d
,
an
d
ev
er
y
th
in
g
else.
Ho
wev
er
,
t
h
e
p
r
o
p
o
s
ed
m
eth
o
d
ac
h
iev
e
d
an
ac
cu
r
ac
y
o
f
9
2
.
6
%.
Fig
u
r
e
3
.
B
lo
ck
d
iag
r
am
o
f
th
e
p
r
o
p
o
s
ed
s
y
s
tem
APNR
i
s
a
f
o
r
m
o
f
OC
R
.
I
t
ex
tr
ac
ts
tex
tu
al
in
f
o
r
m
atio
n
f
r
o
m
a
d
ig
ital
im
ag
e,
wh
ich
c
o
n
s
is
ts
o
f
0
to
9
d
ig
its
an
d
al
p
h
ab
ets
A
t
o
Z
.
As
a
r
esu
lt
o
f
its
ad
v
a
n
ce
d
f
u
n
ctio
n
s
f
o
r
r
ea
d
i
n
g
m
ix
ed
f
o
n
ts
,
th
e
OC
R
m
o
d
u
le
is
s
u
itab
le
f
o
r
r
ec
o
g
n
izin
g
n
u
m
b
er
p
lates.
Ad
d
itio
n
ally
,
it
i
n
clu
d
es
ch
a
r
ac
ter
s
th
at
ar
e
n
o
t
wr
itten
o
n
s
tr
aig
h
t
lin
es
as
well
as
n
u
m
b
er
s
a
n
d
letter
s
wr
itten
o
n
th
e
s
am
e
lin
e.
Natio
n
al
in
s
tr
u
m
e
n
ts
(
NI
)
v
is
io
n
ass
is
tan
t
ca
n
b
e
u
s
ed
to
r
e
co
g
n
ize
licen
s
e
p
late
n
u
m
b
er
s
.
Fig
u
r
e
4
illu
s
tr
ates
th
e
o
p
tical
ch
ar
ac
ter
r
ec
o
g
n
itio
n
alg
o
r
ith
m
.
OC
R
d
iv
id
es
a
p
ictu
r
e
o
f
a
w
r
itten
ch
ar
ac
ter
i
n
to
s
eg
m
en
ts
to
d
eter
m
i
n
e
wh
eth
er
a
r
e
g
io
n
is
em
p
ty
o
r
n
o
t.
B
ased
o
n
th
e
ty
p
e
f
ac
e
o
r
s
cr
ip
t
o
f
th
e
letter
u
s
ed
f
o
r
th
e
letter
,
th
e
ch
ec
k
s
u
m
o
f
th
e
r
esu
ltin
g
m
atr
ix
is
th
e
n
id
en
tifie
d
(
at
least
in
itially
)
a
s
r
elatin
g
to
t
h
e
ch
a
r
ac
ter
in
th
e
im
ag
e
.
T
h
e
ac
q
u
is
itio
n
i
s
u
s
ed
to
g
et
n
o
n
-
ed
itab
le
tex
t f
r
o
m
f
latb
ed
s
ca
n
s
o
f
co
r
p
o
r
ate
ar
c
h
iv
es,
s
ec
u
r
it
y
f
o
o
ta
g
e,
an
d
m
o
b
ile
im
ag
in
g
d
ev
ices.
I
n
p
r
ep
r
o
ce
s
s
in
g
,
n
o
is
e
is
r
e
m
o
v
ed
o
r
r
ed
u
ce
d
f
r
o
m
s
o
u
r
c
e
im
ag
es
at
th
e
ag
g
r
eg
ate
lev
el
to
m
ak
e
tex
t
ea
s
ier
to
r
ea
d
.
T
h
e
p
r
o
ce
s
s
o
f
s
eg
m
en
tatio
n
a
n
d
f
ea
tu
r
e
ex
tr
ac
tio
n
in
v
o
lv
es
s
ea
r
ch
in
g
th
e
im
ag
e
co
n
ten
t
f
o
r
cl
u
s
ter
s
o
f
p
ix
els
th
at
ar
e
l
ik
ely
to
r
ep
r
esen
t
in
d
iv
i
d
u
al
c
h
ar
ac
ter
s
an
d
ca
teg
o
r
izin
g
th
e
m
ac
co
r
d
in
g
ly
.
T
h
e
m
ac
h
in
e
lear
n
in
g
f
r
a
m
ewo
r
k
will
attem
p
t
to
g
en
er
ate
ch
ar
a
cter
is
tics
f
o
r
th
e
r
ec
u
r
r
in
g
p
ix
el
clu
s
ter
s
it
d
etec
ts
b
ased
o
n
g
en
er
alize
d
OC
R
t
em
p
lates
o
r
ea
r
lier
m
o
d
els.
Ver
if
icatio
n
b
y
h
u
m
a
n
s
will
b
e
r
eq
u
ir
ed
later
.
Fo
llo
win
g
th
e
d
ef
i
n
itio
n
o
f
all
f
ea
tu
r
es,
th
e
d
ata
ca
n
b
e
p
r
o
c
ess
ed
in
a
n
eu
r
al
n
etwo
r
k
tr
ai
n
in
g
s
ess
io
n
,
d
u
r
i
n
g
wh
ich
a
m
o
d
el
attem
p
ts
to
cr
e
ate
g
en
er
ic
im
ag
e
-
to
-
tex
t m
a
p
p
in
g
.
Fo
llo
win
g
th
e
p
r
o
ce
s
s
in
g
,
h
u
m
an
s
r
ev
iew
th
e
r
esu
lts
,
an
d
an
y
n
ec
ess
ar
y
m
o
d
if
icatio
n
s
ar
e
in
clu
d
ed
in
th
e
n
ex
t r
o
u
n
d
o
f
tr
ain
in
g
.
I
t is n
ec
es
s
ar
y
to
ex
am
in
e
th
e
q
u
ality
o
f
th
e
d
ata.
I
t is p
o
s
s
ib
l
e
to
cr
ea
te
a
d
ec
en
t
alg
o
r
ith
m
with
m
in
im
al
p
r
e
p
r
o
ce
s
s
in
g
th
r
o
u
g
h
th
e
u
s
e
o
f
d
e
-
s
k
ewin
g
,
h
ig
h
co
n
tr
ast
p
r
o
ce
s
s
in
g
,
an
d
o
th
e
r
v
alu
ab
le
m
eth
o
d
s
,
b
u
t
m
o
r
e
l
ab
o
r
io
u
s
d
ata
r
ef
i
n
em
en
t
m
ay
b
e
n
ec
ess
ar
y
later
o
n
.
I
t
is
ti
m
e
-
co
n
s
u
m
in
g
an
d
ex
p
en
s
iv
e
to
clea
n
d
ata.
Fig
u
r
e
5
s
h
o
ws
s
tep
-
by
-
s
tep
im
ag
es
th
at
illu
s
tr
ate
th
e
im
p
lem
en
tatio
n
o
f
th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
5
,
Octo
b
e
r
20
25
:
4
7
4
0
-
4
7
5
0
4744
alg
o
r
ith
m
o
n
th
e
s
am
p
le
im
a
g
e.
B
ef
o
r
e
OC
R
is
p
er
f
o
r
m
e
d
,
o
p
tical
ch
ar
ac
te
r
s
ar
e
tr
ain
ed
.
Vis
io
n
a
s
s
is
tan
t
in
clu
d
es
tr
ain
in
g
alg
o
r
ith
m
s
.
Acc
u
r
ate
o
u
tp
u
t
is
en
s
u
r
ed
b
y
ch
ar
ac
ter
tr
ain
in
g
.
Step
-
by
-
s
tep
im
ag
es
ca
n
b
e
s
ee
n
in
Fig
u
r
e
5
(
a)
to
5
(
g
)
:
i
m
ag
e
ac
q
u
ir
e
d
,
co
lo
u
r
th
r
esh
o
ld
im
ag
e,
m
o
r
p
h
o
lo
g
ical
f
ilter
in
g
,
f
illi
n
g
h
o
les,
m
ask
,
m
ask
ed
im
ag
e
,
an
d
OC
R
.
Fig
u
r
e
4
.
B
lo
ck
d
iag
r
am
o
f
th
e
OC
R
alg
o
r
ith
m
(
a)
(
b
)
(
c)
(
d
)
(
e)
(f)
(
g
)
Fig
u
r
e
5
.
S
tep
-
by
-
s
tep
im
a
g
es th
at
illu
s
tr
ate
th
e
im
p
lem
en
tatio
n
o
f
th
e
alg
o
r
ith
m
o
n
th
e
s
am
p
le
im
ag
e
(
a)
im
ag
e
ac
q
u
ir
ed
,
(
b
)
co
lo
u
r
th
r
esh
o
ld
im
ag
e
,
(
c)
m
o
r
p
h
o
lo
g
ical
f
ilter
in
g
,
(
d
)
f
illi
n
g
h
o
les
,
(
e)
m
ask
,
(
f
)
m
ask
ed
im
ag
e
,
a
n
d
(
g
)
OC
R
2
.
3
.
O
bs
t
a
cle
det
ec
t
i
o
n m
ec
ha
nis
m
T
h
e
s
p
ee
d
o
f
a
v
e
h
icle
o
n
th
e
h
ig
h
way
is
d
eter
m
in
e
d
b
y
u
ltra
s
o
n
ic
s
en
s
o
r
s
.
T
h
er
e
is
an
u
ltra
s
o
n
ic
s
en
s
o
r
b
u
r
ied
with
in
th
e
h
ig
h
way
,
wh
ich
h
as
tr
an
s
m
itter
s
an
d
r
ec
eiv
er
s
p
o
i
n
tin
g
u
p
war
d
s
.
W
h
en
ev
er
v
eh
icles
p
ass
o
v
er
it,
th
ey
g
en
er
ate
th
e
E
C
HO
p
u
ls
e
at
th
e
ec
h
o
p
in
s
f
r
o
m
r
ef
lecte
d
wav
es
f
r
o
m
th
e
v
eh
icle
b
ase.
I
n
th
is
wo
r
k
,
th
e
HC
-
SR
0
4
s
en
s
o
r
is
co
m
m
o
n
l
y
u
s
ed
to
m
ea
s
u
r
e
th
e
d
is
tan
ce
b
etwe
en
o
b
s
tacle
s
,
b
u
t
th
e
r
ef
lecte
d
ec
h
o
is
all
th
at
i
s
r
e
q
u
ir
ed
to
s
tar
t
an
d
s
to
p
th
e
tim
er
.
Fig
u
r
e
6
s
h
o
ws
th
e
b
asic
s
etu
p
f
o
r
in
s
tallin
g
s
en
s
o
r
s
o
n
th
e
r
o
ad
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
C
o
mp
u
ter visi
o
n
b
a
s
ed
s
ma
r
t
o
ve
r
s
p
ee
d
in
g
ve
h
icle
s
u
r
ve
illa
n
ce
s
ystem
(
B
u
d
h
a
d
itya
B
h
a
t
ta
ch
a
r
jee
)
4745
T
h
e
s
p
ee
d
o
f
s
o
u
n
d
in
air
is
3
4
0
m
/s
.
T
h
e
g
r
o
u
n
d
clea
r
a
n
ce
o
f
th
e
v
e
h
icle
d
eter
m
in
es
h
o
w
lo
n
g
th
e
tr
an
s
m
itted
wav
e
m
u
s
t
tr
av
el
b
ac
k
to
th
e
r
ec
eiv
er
.
W
h
en
a
v
eh
icle
is
d
etec
ted
,
th
is
o
c
cu
r
s
.
T
h
e
u
ltra
s
o
n
ic
wav
e
to
o
k
twice
as
lo
n
g
to
r
ea
ch
th
e
r
ec
eiv
er
as
it
wo
u
ld
h
a
v
e
tak
en
b
etwe
en
th
e
tr
an
s
m
itter
an
d
th
e
o
b
s
tacle
.
As
a
r
esu
lt,
wh
en
ca
lcu
latin
g
th
e
d
is
tan
ce
to
an
o
b
s
tacle
,
we
d
iv
id
e
it
b
y
2
.
T
h
e
d
is
tan
ce
b
etwe
en
th
e
s
en
s
o
r
s
is
an
ex
p
er
im
en
tal
r
esu
lt.
O
n
a
h
ig
h
way
,
s
u
p
p
o
s
e
v
eh
icle
s
av
er
ag
e
7
0
k
m
/h
r
.
I
t
is
p
o
s
s
ib
le
to
m
an
u
ally
ca
lcu
late
th
e
d
is
tan
ce
b
etwe
en
th
e
s
en
s
o
r
s
in
co
r
p
o
r
atin
g
s
p
ee
d
lim
its
f
r
o
m
1
0
k
m
/h
r
.
to
1
8
0
k
m
/h
r
.
T
im
e
is
m
ea
s
u
r
ed
in
m
illi
s
ec
o
n
d
s
u
s
in
g
a
m
illi
s
ec
o
n
d
tim
er
.
W
e
ass
u
m
e
a
m
ax
im
u
m
s
p
ee
d
o
f
1
8
0
k
m
/h
r
.
an
d
a
m
in
im
u
m
s
p
ee
d
o
f
1
0
k
m
/h
r
.
C
u
r
r
en
tly
,
f
u
ll
-
class
s
ed
an
s
ca
n
r
ea
ch
a
len
g
th
o
f
2
.
5
m
eter
s
.
A
ca
r
ca
n
n
o
t
b
e
d
etec
ted
b
y
b
o
t
h
s
en
s
o
r
s
s
im
u
ltan
eo
u
s
ly
wh
e
n
it
is
5
m
awa
y
.
Fig
u
r
e
6
s
h
o
ws
th
e
b
asic
b
lo
ck
d
iag
r
a
m
s
h
o
win
g
th
e
s
en
s
o
r
s
wo
r
k
in
g
with
th
e
tim
er
.
Fig
u
r
e
6
.
Setu
p
f
o
r
th
e
s
en
s
o
r
s
2
.
4
.
SM
S
g
ener
a
t
io
n u
s
ing
G
SM
W
h
en
a
v
eh
icle
is
d
etec
ted
ex
ce
ed
in
g
th
e
s
p
ee
d
lim
it,
th
e
s
y
s
tem
g
en
er
ates
an
SMS
aler
t
d
ir
ec
ted
to
th
e
p
o
lice
o
r
h
ig
h
way
p
atr
o
l
u
s
in
g
GSM
tech
n
o
lo
g
y
.
T
h
i
s
m
ess
ag
e
in
clu
d
es
th
e
v
eh
icle’
s
n
u
m
b
er
p
late,
r
ec
o
r
d
e
d
s
p
ee
d
,
d
ate,
a
n
d
tim
e
o
f
d
etec
tio
n
,
alo
n
g
with
th
e
h
id
d
e
n
lo
ca
tio
n
wh
er
e
t
h
e
v
i
o
latio
n
was
lo
g
g
e
d
.
On
ce
o
v
er
s
p
ee
d
i
n
g
is
co
n
f
ir
m
ed
,
an
aler
t
m
ess
ag
e
is
tr
an
s
m
itted
s
er
ially
to
th
e
GSM
m
o
d
u
le
(
SIM
8
0
0
L
)
v
ia
an
R
S2
3
2
in
ter
f
ac
e.
T
h
e
tr
a
n
s
m
is
s
io
n
co
n
s
is
ts
o
f
AT
co
m
m
an
d
s
n
ec
ess
ar
y
f
o
r
m
ess
ag
e
f
o
r
m
attin
g
an
d
d
eliv
er
y
,
as
o
u
tlin
e
d
in
T
ab
le
1
.
T
h
e
co
m
m
an
d
s
,
alo
n
g
with
th
e
v
eh
icle
d
etails,
ar
e
s
to
r
ed
in
a
tex
t
f
ile
th
at
is
r
ea
d
lin
e
-
by
-
lin
e
b
y
th
e
GSM
m
o
d
u
le
a
n
d
t
r
an
s
m
itted
th
r
o
u
g
h
th
e
s
er
ial
in
ter
f
ac
e.
A
s
am
p
le
o
f
s
u
ch
a
f
ile
is
s
h
o
wn
in
Fig
u
r
e
7
.
T
h
e
L
AB
VI
E
W
v
ir
tu
al
in
s
tr
u
m
en
t
(
VI
)
h
an
d
les
co
m
m
u
n
icatio
n
th
r
o
u
g
h
th
e
C
OM
p
o
r
t
(
v
ia
USB
to
R
S2
3
2
co
n
v
er
ter
)
,
s
en
d
in
g
ea
c
h
lin
e
o
f
t
h
e
c
o
m
m
an
d
f
ile.
T
h
e
s
y
s
tem
is
co
n
f
ig
u
r
e
d
to
tr
a
n
s
m
it
u
p
to
f
o
u
r
iter
atio
n
s
p
e
r
o
v
e
r
s
p
ee
d
in
g
e
v
en
t
to
av
o
i
d
r
ed
u
n
d
an
t
m
ess
ag
es.
I
n
th
e
ab
s
en
ce
o
f
a
v
io
latio
n
,
th
e
tex
t
f
ile
r
em
ain
s
b
lan
k
an
d
n
o
SMS
is
s
en
t.
T
h
e
SIM
8
0
0
L
m
o
d
u
le,
r
e
q
u
ir
in
g
a
SIM
ca
r
d
,
ca
n
s
en
d
SMS
to
a
s
in
g
le
d
esig
n
ated
n
u
m
b
er
in
i
n
ter
n
atio
n
al
f
o
r
m
at
(
e.
g
.
,
+
9
1
f
o
r
I
n
d
ia)
.
T
y
p
ically
,
th
e
GS
M
m
o
d
u
le
tak
es
4
–
6
s
ec
o
n
d
s
to
in
itialize
an
d
s
en
d
an
SMS
af
ter
d
etec
tio
n
.
D
u
r
in
g
test
in
g
,
a
9
8
%
d
eliv
er
y
s
u
cc
ess
r
ate
was
o
b
s
er
v
ed
u
n
d
er
s
tab
le
n
etwo
r
k
co
n
d
itio
n
s
.
Dela
y
s
b
e
y
o
n
d
t
h
is
win
d
o
w
wer
e
p
r
im
ar
ily
d
u
e
to
wea
k
s
ig
n
al
o
r
n
etwo
r
k
co
n
g
esti
o
n
—
k
n
o
wn
lim
itatio
n
s
o
f
GSM
n
etwo
r
k
s
.
T
o
m
itig
ate
th
is
,
a
r
etr
y
m
ec
h
an
is
m
was
im
p
lem
en
ted
with
in
th
e
L
A
B
VI
E
W
in
ter
f
ac
e,
allo
win
g
u
p
to
f
o
u
r
m
ess
ag
e
attem
p
ts
p
er
ev
en
t
wh
ile
p
r
ev
en
tin
g
d
u
p
licate
aler
ts
.
2
.
5
.
G
ener
a
t
io
n o
f
d
a
t
a
ba
s
e
s
I
n
th
is
p
r
o
ject,
a
d
u
al
-
d
ata
b
ase
s
y
s
tem
is
d
ev
elo
p
ed
:
o
n
e
f
o
r
lo
g
g
in
g
all
v
eh
icles
p
ass
in
g
th
r
o
u
g
h
th
e
h
ig
h
way
an
d
an
o
th
e
r
s
p
ec
if
ically
f
o
r
o
v
er
s
p
ee
d
in
g
v
e
h
icles.
T
h
ese
d
atab
ases
ar
e
g
en
er
ated
u
s
in
g
L
AB
VI
E
W
’
s
FIL
E
I
/O
to
o
lk
it
an
d
ar
e
s
to
r
e
d
lo
ca
lly
as
t
ex
t
f
iles
o
n
a
p
ass
wo
r
d
-
p
r
o
te
cted
co
m
p
u
ter
.
T
o
en
s
u
r
e
d
ata
s
ec
u
r
ity
,
ac
ce
s
s
to
th
ese
f
iles
is
lim
ited
to
au
t
h
o
r
ized
p
er
s
o
n
n
el
th
r
o
u
g
h
o
p
er
atin
g
s
y
s
tem
-
lev
el
u
s
er
p
er
m
is
s
io
n
s
.
T
h
e
aler
t
s
y
s
tem
is
d
e
s
ig
n
ed
to
d
etec
t
an
d
r
ep
o
r
t
o
v
er
s
p
ee
d
in
g
in
cid
en
ts
o
n
I
n
d
ia
n
h
ig
h
way
s
u
s
in
g
a
co
m
b
in
atio
n
o
f
u
ltra
s
o
n
ic
s
en
s
o
r
s
,
ca
m
e
r
as,
an
d
OC
R
alg
o
r
ith
m
s
.
W
h
e
n
a
v
eh
icle
cr
o
s
s
es
th
e
f
ir
s
t
u
ltra
s
o
n
ic
s
en
s
o
r
,
it
tr
ig
g
er
s
a
ca
m
er
a
to
ca
p
tu
r
e
a
f
r
o
n
t
-
f
ac
in
g
im
ag
e.
Up
o
n
d
ete
ctio
n
b
y
th
e
s
ec
o
n
d
s
en
s
o
r
,
th
e
s
y
s
tem
ca
lcu
late
s
th
e
v
eh
icle’
s
s
p
ee
d
u
s
in
g
th
e
tim
e
d
if
f
er
en
ce
b
etwe
e
n
th
e
two
s
en
s
o
r
ac
tiv
atio
n
s
.
T
h
e
ca
p
tu
r
ed
im
a
g
e
is
th
en
d
is
p
lay
ed
i
n
th
e
L
A
B
VI
E
W
-
b
ased
u
s
er
in
ter
f
ac
e,
allo
win
g
ev
en
n
o
n
-
tech
n
ical
o
p
er
at
o
r
s
to
m
an
u
ally
s
elec
t th
e
r
eg
io
n
o
f
in
te
r
est (
R
OI
)
f
o
r
OC
R
p
r
o
ce
s
s
in
g
.
I
f
th
e
s
y
s
tem
id
e
n
tifie
s
th
e
n
u
m
b
er
p
late
a
n
d
d
eter
m
i
n
es
t
h
at
th
e
v
eh
icle
is
o
v
e
r
s
p
ee
d
in
g
,
an
SMS
aler
t
is
au
to
m
atica
lly
s
en
t
to
t
h
e
p
o
lice
v
ia
th
e
in
teg
r
ated
G
SM
m
o
d
u
le.
I
m
p
o
r
tan
tly
,
th
e
s
y
s
tem
co
llects
o
n
ly
ess
en
tial
d
ata
—
v
eh
icle
r
eg
is
tr
atio
n
n
u
m
b
er
s
,
s
p
ee
d
,
d
ate,
an
d
tim
e
—
with
o
u
t
s
to
r
in
g
an
y
p
er
s
o
n
all
y
id
en
tifia
b
le
in
f
o
r
m
atio
n
(
PII
)
.
Fo
r
d
ata
r
eten
tio
n
,
lo
g
s
ca
n
b
e
au
to
-
ar
ch
i
v
ed
o
n
a
m
o
n
th
l
y
b
asis
,
with
d
eletio
n
s
ch
ed
u
les s
et
ac
co
r
d
in
g
t
o
in
s
titu
tio
n
al
o
r
g
o
v
er
n
m
en
t
d
ata
h
an
d
lin
g
p
o
licies.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
5
,
Octo
b
e
r
20
25
:
4
7
4
0
-
4
7
5
0
4746
I
t
tak
es
n
o
tim
e
at
all
to
g
en
e
r
ate
a
d
atab
ase
with
t
h
e
u
p
d
ate
d
en
tr
y
o
f
th
e
ca
r
.
T
h
e
s
p
ee
d
at
wh
ich
it
tr
av
elled
is
also
in
clu
d
ed
.
T
h
e
r
e
ar
e
s
ev
er
al
ess
en
tial f
ea
tu
r
e
s
o
f
th
e
p
r
o
ject,
in
clu
d
i
n
g
:
a.
I
n
ad
d
itio
n
,
th
e
r
e
is
a
well
-
o
r
g
an
ized
USER I
NT
E
R
FAC
E
th
at
d
is
p
lay
s
r
ea
l
-
tim
e
v
eh
icle
i
m
ag
es,
d
etec
ted
s
p
ee
d
,
ex
tr
ac
ted
licen
s
e
p
late
tex
t,
o
v
e
r
s
p
ee
d
in
g
ale
r
ts
an
d
lo
g
o
f
r
ec
en
t
e
v
en
ts
th
at
a
n
o
n
-
tec
h
n
ical
p
er
s
o
n
ca
n
ea
s
ily
u
n
d
e
r
s
tan
d
.
b.
T
h
e
in
ter
f
ac
e
in
clu
d
es
v
is
u
al
in
d
icato
r
s
(
L
E
Ds)
an
d
s
im
p
le
ac
tio
n
b
u
tto
n
s
,
en
s
u
r
in
g
t
h
at
u
s
er
s
with
m
in
im
al
tech
n
ical
b
ac
k
g
r
o
u
n
d
ca
n
o
p
er
ate
th
e
s
y
s
tem
.
T
h
e
R
OI
s
elec
t
io
n
f
o
r
OC
R
i
s
s
em
i
-
au
to
m
ated
b
u
t
ca
n
also
b
e
m
an
u
ally
ad
ju
s
ted
u
s
in
g
m
o
u
s
e
in
p
u
t if
n
ee
d
ed
.
c.
T
h
e
GSM
m
o
d
u
le
g
en
er
ates
m
ess
ag
es
au
to
m
atica
lly
with
o
u
t
r
eq
u
ir
in
g
u
s
er
in
p
u
t.
B
y
u
s
in
g
a
s
er
ial
-
to
-
USB
co
n
v
er
ter
,
an
y
f
au
lt in
t
h
e
m
o
d
u
le
ca
n
b
e
q
u
ick
ly
r
ep
ai
r
ed
.
d.
T
h
er
e
is
n
o
way
to
d
a
m
ag
e
h
ar
d
war
e
u
n
its
u
n
til
p
h
y
s
ical
d
am
ag
e
o
cc
u
r
s
;
th
u
s
,
all
h
ar
d
w
ar
e
u
n
its
ar
e
o
u
t
o
f
r
ea
ch
o
f
th
e
o
p
e
r
ato
r
.
e.
R
eg
ar
d
in
g
tr
ain
in
g
,
a
b
r
ief
1
–
2
h
o
u
r
s
ess
io
n
is
s
u
f
f
icien
t
f
o
r
o
p
er
ato
r
s
t
o
lear
n
s
y
s
tem
s
tar
tu
p
,
d
ata
h
an
d
lin
g
,
an
d
SMS
m
o
n
ito
r
in
g
p
r
o
ce
d
u
r
es.
T
h
e
in
ter
f
ac
e
a
ls
o
p
r
o
v
id
es
er
r
o
r
p
r
o
m
p
ts
an
d
co
n
f
ir
m
atio
n
m
ess
ag
es to
g
u
id
e
u
s
er
s
.
T
h
e
f
o
llo
win
g
ar
e
ad
d
itio
n
al
f
ea
tu
r
es:
a.
Prin
tab
le
d
atab
ases
ar
e
cr
ea
te
d
in
.
tx
t f
o
r
m
at.
b.
I
n
ca
s
e
o
f
d
am
ag
e,
all
p
ar
t
s
ar
e
ea
s
ily
r
e
p
lace
ab
le.
Am
o
n
g
its
co
m
p
o
n
en
ts
a
r
e
t
h
e
ca
m
er
a
,
th
e
m
icr
o
co
n
tr
o
ller
,
th
e
s
en
s
o
r
s
,
a
n
d
th
e
GSM
m
o
d
u
le.
A
d
atab
ase
is
g
en
er
ated
b
y
th
e
s
o
f
twar
e
th
at
r
ec
o
r
d
s
all
v
eh
icles
tr
av
elin
g
o
n
th
e
h
ig
h
way
an
d
th
o
s
e
o
v
er
s
p
ee
d
in
g
.
E
ac
h
en
tr
y
in
t
h
e
d
atab
ase
co
n
tain
s
th
e
v
eh
i
cle
n
u
m
b
er
p
late,
s
p
ee
d
,
d
ate,
an
d
cr
o
s
s
in
g
tim
e.
Fo
r
f
u
r
t
h
er
r
ef
er
r
als,
th
ese
ca
n
b
e
tr
a
n
s
f
er
r
ed
as
E
x
ce
l
s
h
ee
ts
o
r
p
r
in
ted
f
o
r
r
eten
tio
n
b
y
th
e
R
T
O
o
r
Natio
n
al
Hig
h
way
s
Au
th
o
r
ity
o
f
I
n
d
ia
(
NHAI
)
.
L
AB
VI
E
W
's
FIL
E
I
/O
to
o
lk
it
is
u
s
ed
to
g
en
er
ate
th
e
d
atab
ases
.
As
s
h
o
wn
in
Fig
u
r
e
7
,
ea
ch
e
n
tr
y
is
en
ter
ed
wh
en
e
v
er
a
s
a
tis
f
ac
to
r
y
n
u
m
b
e
r
p
late
len
g
th
is
d
etec
ted
.
W
h
en
cr
ea
tin
g
en
tr
ies,
it
is
im
p
o
r
t
an
t
to
tak
e
ca
u
tio
n
.
Su
p
p
o
s
e
th
e
d
atab
ase
g
e
n
er
ato
r
c
o
d
e
tak
es
to
o
lo
n
g
to
g
en
er
ate
ea
ch
en
tr
y
.
I
n
th
at
ca
s
e,
th
e
d
atab
ase
m
ay
co
n
t
ain
d
u
p
licate
e
n
tr
ies
m
o
r
e
th
an
o
n
ce
,
wh
ich
is
u
n
p
r
o
f
ess
io
n
al.
A
f
ew
s
ec
o
n
d
s
d
elay
is
a
llo
wed
f
o
r
th
e
g
en
er
ato
r
to
r
u
n
wh
en
an
en
t
r
y
n
ee
d
s
to
b
e
s
av
ed
f
o
r
ch
ec
k
in
g
.
Un
co
n
tr
o
lled
r
u
n
ti
m
e
ex
ec
u
tio
n
en
s
u
r
es th
at
n
o
t
wo
en
tr
ies ar
e
r
ep
ea
te
d
.
Fig
u
r
e
7
.
Sam
p
le
te
x
t f
ile
f
o
r
s
en
d
in
g
a
m
ess
ag
e
in
an
o
v
er
-
s
p
ee
d
in
g
ca
s
e
an
d
d
atab
ase
m
ai
n
ten
an
ce
3.
RE
SU
L
T
ANAL
YSI
S F
O
R
VARIO
US
SCE
N
ARIO
T
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
is
p
r
im
ar
ily
in
ten
d
ed
f
o
r
d
ep
lo
y
m
en
t
o
n
h
i
g
h
way
s
,
wh
er
e
ac
cu
r
ate
v
eh
icle
s
p
ee
d
an
d
licen
s
e
p
late
d
etec
t
io
n
ar
e
cr
u
cial.
Du
e
to
h
ar
d
w
ar
e
an
d
test
in
g
c
o
n
s
tr
ain
ts
,
a
co
m
p
ac
t
p
r
o
to
t
y
p
e
p
latf
o
r
m
was
d
ev
elo
p
ed
,
in
teg
r
atin
g
ess
en
tial
co
m
p
o
n
en
t
s
with
o
u
t
co
m
p
r
o
m
is
in
g
co
r
e
f
u
n
ctio
n
ality
.
T
o
en
s
u
r
e
p
r
ec
is
e
im
ag
e
ca
p
tu
r
e
d
u
r
in
g
v
eh
icle
m
o
tio
n
,
a
h
ig
h
-
r
eso
lu
tio
n
ca
m
e
r
a
with
o
p
tim
ized
lig
h
tin
g
wa
s
em
p
lo
y
ed
,
m
in
im
izin
g
m
o
tio
n
b
lu
r
an
d
en
s
u
r
i
n
g
clea
r
n
u
m
b
er
p
late
im
ag
es.
Alth
o
u
g
h
f
u
ll
-
s
ca
le
test
in
g
o
n
ac
tu
al
h
ig
h
way
s
was
n
o
t
f
ea
s
ib
le,
th
e
s
y
s
tem
was
ev
alu
ated
u
n
d
er
co
m
p
ar
ab
le
co
n
d
itio
n
s
u
s
in
g
s
ca
led
co
m
p
o
n
en
ts
.
Fo
r
r
elia
b
le
u
ltra
s
o
n
ic
s
en
s
o
r
r
ea
d
in
g
s
,
a
h
ar
d
p
last
ic
lid
was
u
s
ed
to
s
im
u
late
a
v
eh
icle,
as
s
o
f
t
m
ater
ials
—
s
u
ch
a
s
s
p
o
n
g
es
o
r
h
u
m
an
p
alm
s
—
d
am
p
en
u
ltra
s
o
n
ic
r
ef
lectio
n
s
an
d
r
ed
u
ce
d
etec
tio
n
ac
cu
r
ac
y
.
Sin
ce
o
b
tain
in
g
h
ig
h
s
ec
u
r
ity
r
e
g
is
tr
atio
n
p
lat
es
(
HSR
P)
f
r
o
m
th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
C
o
mp
u
ter visi
o
n
b
a
s
ed
s
ma
r
t
o
ve
r
s
p
ee
d
in
g
ve
h
icle
s
u
r
ve
illa
n
ce
s
ystem
(
B
u
d
h
a
d
itya
B
h
a
t
ta
ch
a
r
jee
)
4747
R
T
O
r
eq
u
ir
es
o
f
f
icial
clea
r
an
ce
,
s
am
p
le
p
lates
wer
e
in
s
tea
d
u
s
ed
d
u
r
in
g
test
in
g
.
T
wo
ca
teg
o
r
ies
o
f
n
u
m
b
er
p
late
im
ag
es
wer
e
an
aly
ze
d
.
T
h
e
f
ir
s
t
in
v
o
lv
ed
r
ea
l
v
eh
icl
es
ca
p
tu
r
ed
in
r
ea
l
-
tim
e
u
s
in
g
a
h
ig
h
-
r
eso
lu
tio
n
ca
m
er
a
in
Fig
u
r
e
s
8
(
a
)
a
n
d
8
(
b
)
,
wh
ile
th
e
s
ec
o
n
d
in
v
o
l
v
ed
p
r
i
n
ted
n
u
m
b
er
p
lates
o
n
h
ig
h
-
q
u
ality
p
ap
er
p
h
o
to
g
r
ap
h
e
d
b
y
a
web
ca
m
in
Fig
u
r
e
s
8
(
c
)
,
8(
d
)
,
an
d
8
(
e)
.
T
h
is
allo
wed
th
e
s
y
s
tem
to
b
e
test
ed
in
b
o
th
id
ea
l
an
d
p
r
ac
tical
c
o
n
d
itio
n
s
.
Des
p
ite
u
s
in
g
a
b
asic
VGA
web
c
am
f
o
r
t
h
e
s
ec
o
n
d
ca
teg
o
r
y
,
t
h
e
OC
R
s
y
s
tem
wa
s
d
esig
n
ed
to
m
ain
tain
co
n
s
is
ten
t r
ec
o
g
n
itio
n
p
er
f
o
r
m
an
ce
.
Fig
u
r
e
9
s
h
o
ws th
e
L
AB
VI
E
W
-
b
ased
u
s
er
in
ter
f
ac
e
d
ev
elo
p
e
d
f
o
r
r
ea
l
-
tim
e
test
in
g
an
d
m
o
n
ito
r
i
n
g
.
(
a)
(
b
)
(
c)
(
d
)
(
e)
Fig
u
r
e
8
.
Dif
f
e
r
en
t ty
p
es o
f
n
u
m
b
er
p
lates c
o
n
s
id
er
e
d
f
o
r
th
e
an
aly
s
is
(
a)
an
d
(
b
)
r
ea
l v
eh
ic
les ca
p
tu
r
ed
in
r
ea
l
-
tim
e
u
s
in
g
a
h
i
g
h
-
r
eso
l
u
tio
n
ca
m
er
a
;
(
c)
,
(
d
)
an
d
(
e)
p
r
i
n
ted
n
u
m
b
er
p
lates o
n
h
ig
h
-
q
u
ality
p
ap
er
p
h
o
to
g
r
ap
h
e
d
b
y
a
web
ca
m
Fig
u
r
e
9
.
T
h
e
u
s
er
in
ter
f
ac
e
f
o
r
th
e
p
r
o
ject
T
o
en
h
a
n
ce
im
ag
e
clar
ity
b
ef
o
r
e
OC
R
,
p
r
ep
r
o
ce
s
s
in
g
tech
n
iq
u
es
—
in
clu
d
in
g
m
o
r
p
h
o
lo
g
ica
l
f
ilter
in
g
,
h
o
le
f
illi
n
g
,
an
d
co
n
tr
ast
en
h
an
ce
m
en
t
wer
e
a
p
p
lied
.
T
h
e
OC
R
en
g
in
e
was
tr
ain
ed
u
s
in
g
cu
s
to
m
d
atasets
o
f
I
n
d
ian
licen
s
e
p
l
ates,
ac
co
u
n
tin
g
f
o
r
f
o
n
t
v
a
r
iatio
n
s
an
d
d
iv
e
r
s
e
lig
h
tin
g
co
n
d
itio
n
s
.
Po
s
t
-
r
ec
o
g
n
itio
n
,
a
ch
a
r
ac
ter
v
ali
d
atio
n
lay
er
e
n
s
u
r
ed
f
o
r
m
at
co
m
p
lian
ce
(
e.
g
.
,
f
lag
g
in
g
al
p
h
ab
etic
ch
ar
ac
te
r
s
wh
er
e
d
ig
its
a
r
e
ex
p
ec
ted
)
,
e
n
ab
lin
g
m
an
u
al
r
ev
iew
wh
en
n
ee
d
ed
.
Ov
er
all,
th
e
s
y
s
tem
d
em
o
n
s
tr
ated
s
tab
le
an
d
ac
cu
r
ate
p
er
f
o
r
m
an
ce
ac
r
o
s
s
r
ea
l
-
tim
e
co
n
s
tr
ain
ts
.
T
h
e
p
r
o
to
ty
p
e
ac
h
iev
e
d
an
OC
R
ac
cu
r
ac
y
r
ate
o
f
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
5
,
Octo
b
e
r
20
25
:
4
7
4
0
-
4
7
5
0
4748
9
2
.
6
%,
with
m
o
s
t
e
r
r
o
r
s
o
cc
u
r
r
in
g
u
n
d
er
s
u
b
o
p
tim
al
lig
h
ti
n
g
o
r
im
a
g
in
g
an
g
les.
Fu
tu
r
e
im
p
r
o
v
em
en
ts
will
ex
p
lo
r
e
d
ee
p
lear
n
in
g
-
b
ased
OC
R
m
o
d
els
an
d
r
ed
u
n
d
a
n
t
f
r
am
e
an
aly
s
is
to
m
in
im
ize
f
a
ls
e
d
etec
tio
n
s
.
T
h
e
r
esu
lts
in
d
icate
th
at
wh
ile
in
d
u
s
tr
ial
ANP
R
ca
m
er
as c
o
u
ld
f
u
r
th
er
b
o
o
s
t a
cc
u
r
ac
y
,
th
e
cu
r
r
e
n
t so
lu
tio
n
o
f
f
er
s
a
p
r
o
m
is
in
g
,
c
o
s
t
-
ef
f
ec
tiv
e
ap
p
r
o
ac
h
f
o
r
r
ea
l
-
wo
r
ld
h
ig
h
way
m
o
n
ito
r
in
g
.
4.
CO
NCLU
SI
O
N
T
h
e
d
ev
elo
p
ed
p
r
o
to
ty
p
e
ac
c
u
r
ately
d
etec
ts
v
eh
icle
s
p
ee
d
an
d
n
u
m
b
er
p
lates,
wh
ile
g
en
er
atin
g
r
eliab
le,
er
r
o
r
-
f
r
ee
d
ata
b
ases
.
T
h
e
GSM
aler
t
s
y
s
tem
o
p
er
ates
as
in
ten
d
ed
,
co
n
s
is
ten
tly
is
s
u
in
g
n
o
tific
atio
n
s
wh
en
o
v
e
r
s
p
ee
d
in
g
ev
en
ts
ar
e
d
etec
ted
.
T
h
is
estab
lis
h
es
a
s
o
lid
f
o
u
n
d
atio
n
f
o
r
in
tellig
en
t
tr
af
f
ic
m
o
n
ito
r
in
g
;
h
o
wev
er
,
th
er
e
r
e
m
ain
s
co
n
s
i
d
er
ab
le
s
co
p
e
f
o
r
en
h
a
n
ce
m
e
n
t,
p
ar
ticu
lar
l
y
in
ar
ea
s
s
u
c
h
as
o
b
s
tacle
d
etec
tio
n
an
d
im
ag
e
p
r
o
c
ess
in
g
.
I
m
p
r
o
v
em
en
ts
lik
e
ad
v
an
ce
d
n
u
m
b
e
r
p
late
lo
ca
lizatio
n
a
n
d
a
u
to
m
atic
R
OI
ex
tr
ac
tio
n
ca
n
f
u
r
th
e
r
o
p
tim
ize
p
e
r
f
o
r
m
an
ce
.
C
u
r
r
en
tly
,
th
e
s
y
s
tem
d
o
es
n
o
t
h
an
d
le
a
d
v
er
s
e
en
v
i
r
o
n
m
en
tal
co
n
d
itio
n
s
s
u
ch
as
h
ea
v
y
r
ain
,
f
o
g
,
o
r
lo
w
-
lig
h
t
s
ce
n
ar
io
s
d
u
e
t
o
h
ar
d
wa
r
e
co
n
s
tr
ain
ts
.
T
h
e
s
e
lim
itatio
n
s
ar
e
ac
k
n
o
wled
g
e
d
as
cr
itical
ch
allen
g
es
f
o
r
r
ea
l
-
wo
r
ld
d
e
p
lo
y
m
en
t.
Fu
t
u
r
e
iter
atio
n
s
m
ay
in
co
r
p
o
r
ate
tech
n
o
lo
g
ies
lik
e
in
f
r
a
r
ed
i
m
ag
in
g
,
ad
ap
tiv
e
th
r
esh
o
l
d
in
g
,
a
n
d
d
ee
p
lea
r
n
in
g
-
b
ase
d
OC
R
to
im
p
r
o
v
e
r
o
b
u
s
tn
ess
in
s
u
ch
co
n
d
itio
n
s
.
I
n
ter
m
s
o
f
d
ata
g
o
v
er
n
a
n
ce
,
p
r
iv
ac
y
a
n
d
s
ec
u
r
ity
r
e
m
ain
to
p
p
r
io
r
ities
.
Up
co
m
in
g
v
e
r
s
io
n
s
will
in
c
lu
d
e
en
cr
y
p
tio
n
m
ec
h
an
is
m
s
,
s
ec
u
r
e
r
em
o
te
ac
ce
s
s
ca
p
ab
ilit
ies,
an
d
f
u
ll
co
m
p
lian
ce
with
I
n
d
ian
d
ata
p
r
o
tectio
n
f
r
a
m
ewo
r
k
s
,
in
clu
d
in
g
th
e
d
ig
ital
p
er
s
o
n
al
d
ata
p
r
o
tectio
n
ac
t
,
2
0
2
3
.
T
o
co
m
b
at
p
o
ten
tial
m
is
u
s
e,
p
lan
n
ed
f
ea
tu
r
es
also
in
cl
u
d
e
f
ak
e
p
late
d
etec
tio
n
th
r
o
u
g
h
im
ag
e
f
o
r
en
s
ics,
co
n
s
is
ten
cy
ch
ec
k
s
ac
r
o
s
s
ch
ec
k
p
o
in
ts
,
an
d
v
eh
icle
ap
p
ea
r
an
ce
-
b
ased
tam
p
e
r
in
g
d
etec
tio
n
.
Ad
d
itio
n
ally
,
f
u
tu
r
e
d
e
v
elo
p
m
e
n
ts
will
in
t
r
o
d
u
ce
tr
af
f
ic
an
aly
tics
ca
p
ab
ilit
ies,
en
ab
lin
g
th
e
s
y
s
tem
to
id
en
tify
p
ea
k
o
v
er
s
p
ee
d
in
g
h
o
u
r
s
,
an
aly
ze
v
eh
icle
f
lo
w
tr
en
d
s
,
a
n
d
m
ap
lo
ca
tio
n
-
b
ased
v
i
o
latio
n
clu
s
ter
s
.
T
h
ese
in
s
ig
h
ts
will
s
u
p
p
o
r
t d
ata
-
d
r
i
v
en
law
e
n
f
o
r
ce
m
e
n
t
an
d
in
f
r
astru
ctu
r
e
p
lan
n
in
g
.
W
ith
its
s
ca
lab
le,
m
o
d
u
lar
ar
ch
itectu
r
e
,
th
e
s
y
s
tem
is
well
-
s
u
ited
f
o
r
ex
p
an
s
io
n
in
to
f
u
ll
-
s
ca
le,
r
ea
l
-
wo
r
l
d
h
ig
h
way
m
o
n
it
o
r
in
g
an
d
tr
af
f
ic
en
f
o
r
ce
m
e
n
t a
p
p
licatio
n
s
.
ACK
NO
WL
E
DG
M
E
N
T
S
W
e
g
r
atef
u
lly
ac
k
n
o
wled
g
e
Vello
r
e
I
n
s
titu
te
o
f
T
ec
h
n
o
lo
g
y
,
Vello
r
e
f
o
r
its
s
u
p
p
o
r
t
in
f
ac
ilit
atin
g
th
is
r
esear
ch
.
F
UNDING
I
NF
O
R
M
A
T
I
O
N
No
f
u
n
d
in
g
in
v
o
lv
e
d
in
th
is
r
e
s
ea
r
ch
wo
r
k
AUTHO
R
CO
NT
RI
B
UT
I
O
NS ST
A
T
E
M
E
N
T
T
h
is
jo
u
r
n
al
u
s
es
th
e
C
o
n
tr
ib
u
to
r
R
o
les
T
ax
o
n
o
m
y
(
C
R
ed
iT)
to
r
ec
o
g
n
ize
in
d
iv
id
u
al
au
th
o
r
co
n
tr
ib
u
tio
n
s
,
r
ed
u
ce
au
th
o
r
s
h
ip
d
is
p
u
tes,
an
d
f
ac
ilit
ate
co
llab
o
r
atio
n
.
Na
m
e
o
f
Aut
ho
r
C
M
So
Va
Fo
I
R
D
O
E
Vi
Su
P
Fu
B
u
d
h
ad
ity
a
B
h
attac
h
ar
jee
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
Pra
g
y
en
d
r
a
✓
✓
✓
✓
✓
✓
B
o
o
p
alan
G
✓
✓
✓
✓
✓
✓
Sh
an
m
u
g
asu
n
d
ar
am
M
✓
✓
✓
✓
✓
C
:
C
o
n
c
e
p
t
u
a
l
i
z
a
t
i
o
n
M
:
M
e
t
h
o
d
o
l
o
g
y
So
:
So
f
t
w
a
r
e
Va
:
Va
l
i
d
a
t
i
o
n
Fo
:
Fo
r
mal
a
n
a
l
y
s
i
s
I
:
I
n
v
e
s
t
i
g
a
t
i
o
n
R
:
R
e
so
u
r
c
e
s
D
:
D
a
t
a
C
u
r
a
t
i
o
n
O
:
W
r
i
t
i
n
g
-
O
r
i
g
i
n
a
l
D
r
a
f
t
E
:
W
r
i
t
i
n
g
-
R
e
v
i
e
w
&
E
d
i
t
i
n
g
Vi
:
Vi
su
a
l
i
z
a
t
i
o
n
Su
:
Su
p
e
r
v
i
s
i
o
n
P
:
P
r
o
j
e
c
t
a
d
mi
n
i
st
r
a
t
i
o
n
Fu
:
Fu
n
d
i
n
g
a
c
q
u
i
si
t
i
o
n
CO
NF
L
I
C
T
O
F
I
N
T
E
R
E
S
T
ST
A
T
E
M
E
NT
No
co
n
f
lict o
f
in
ter
est.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
C
o
mp
u
ter visi
o
n
b
a
s
ed
s
ma
r
t
o
ve
r
s
p
ee
d
in
g
ve
h
icle
s
u
r
ve
illa
n
ce
s
ystem
(
B
u
d
h
a
d
itya
B
h
a
t
ta
ch
a
r
jee
)
4749
DATA AV
AI
L
AB
I
L
I
T
Y
T
h
e
au
th
o
r
s
co
n
f
ir
m
th
at
th
e
d
ata
s
u
p
p
o
r
tin
g
th
e
f
in
d
in
g
s
o
f
th
is
s
tu
d
y
ar
e
a
v
ailab
le
with
in
th
e
ar
ticle.
RE
F
E
R
E
NC
E
S
[
1
]
M
.
A
.
Jaw
a
l
e
,
P
.
W
i
l
l
i
a
m
,
A
.
B
.
P
a
w
a
r
,
a
n
d
N
.
M
a
r
r
i
w
a
l
a
,
“
I
mp
l
e
me
n
t
a
t
i
o
n
o
f
n
u
m
b
e
r
p
l
a
t
e
d
e
t
e
c
t
i
o
n
s
y
st
e
m
f
o
r
v
e
h
i
c
l
e
r
e
g
i
s
t
r
a
t
i
o
n
u
si
n
g
I
O
T
a
n
d
r
e
c
o
g
n
i
t
i
o
n
u
s
i
n
g
C
N
N
,
”
Me
a
s
u
reme
n
t
:
S
e
n
s
o
rs
,
v
o
l
.
2
7
,
p
.
1
0
0
7
6
1
,
Ju
n
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
m
e
a
s
e
n
.
2
0
2
3
.
1
0
0
7
6
1
.
[
2
]
P
.
K
a
m
b
l
e
,
R
.
P
i
sa
l
,
H
.
K
h
a
d
e
,
V
.
S
o
l
e
,
a
n
d
P
.
S
.
R
.
B
h
u
j
b
a
l
,
“
A
u
t
o
m
a
t
e
d
v
e
h
i
c
l
e
n
u
mb
e
r
p
l
a
t
e
d
e
t
e
c
t
i
o
n
a
n
d
r
e
c
o
g
n
i
t
i
o
n
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
f
o
r
Re
s
e
a
r
c
h
i
n
A
p
p
l
i
e
d
S
c
i
e
n
c
e
a
n
d
En
g
i
n
e
e
ri
n
g
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
1
1
,
n
o
.
1
,
p
p
.
1
3
0
7
–
1
3
1
1
,
Ja
n
.
2
0
2
3
,
d
o
i
:
1
0
.
2
2
2
1
4
/
i
j
r
a
s
e
t
.
2
0
2
3
.
4
8
7
8
5
.
[
3
]
B
.
K
u
m
a
r
,
K
.
K
u
mari
,
P
.
B
a
n
e
r
j
e
e
,
a
n
d
P
.
Jh
a
,
“
A
n
i
m
p
l
e
me
n
t
a
t
i
o
n
o
f
a
u
t
o
m
a
t
i
c
n
u
m
b
e
r
p
l
a
t
e
d
e
t
e
c
t
i
o
n
a
n
d
r
e
c
o
g
n
i
t
i
o
n
u
si
n
g
A
I
,
”
i
n
2
0
2
3
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
A
d
v
a
n
c
e
s i
n
C
o
m
p
u
t
i
n
g
,
C
o
m
m
u
n
i
c
a
t
i
o
n
a
n
d
Ap
p
l
i
e
d
I
n
f
o
rm
a
t
i
c
s
(
AC
C
AI
)
,
M
a
y
2
0
2
3
,
p
p
.
1
–
9
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
A
I
5
8
2
2
1
.
2
0
2
3
.
1
0
1
9
9
8
5
5
.
[
4
]
T.
M
u
s
t
a
f
a
a
n
d
M
.
K
a
r
a
b
a
t
a
k
,
“
D
e
e
p
l
e
a
r
n
i
n
g
m
o
d
e
l
f
o
r
a
u
t
o
m
a
t
i
c
n
u
m
b
e
r
/
l
i
c
e
n
se
p
l
a
t
e
d
e
t
e
c
t
i
o
n
a
n
d
r
e
c
o
g
n
i
t
i
o
n
s
y
s
t
e
m
i
n
c
a
m
p
u
s
g
a
t
e
s
,
”
i
n
2
0
2
3
1
1
th
I
n
t
e
r
n
a
t
i
o
n
a
l
S
y
m
p
o
si
u
m
o
n
D
i
g
i
t
a
l
F
o
ren
s
i
c
s
a
n
d
S
e
c
u
r
i
t
y
(
I
S
D
FS
)
,
M
a
y
2
0
2
3
,
p
p
.
1
–
5
,
d
o
i
:
1
0
.
1
1
0
9
/
I
S
D
F
S
5
8
1
4
1
.
2
0
2
3
.
1
0
1
3
1
7
5
8
.
[
5
]
S
.
Jo
s
h
i
a
n
d
M
.
P
a
r
i
k
h
,
“
V
a
r
i
o
u
s
l
i
c
e
n
se
p
l
a
t
e
d
e
t
e
c
t
i
o
n
a
n
d
r
e
c
o
g
n
i
t
i
o
n
m
e
t
h
o
d
s
u
si
n
g
c
o
m
p
u
t
e
r
v
i
si
o
n
a
n
d
ma
c
h
i
n
e
l
e
a
r
n
i
n
g
,
”
I
T
M
We
b
o
f
C
o
n
f
e
re
n
c
e
s
,
v
o
l
.
5
3
,
p
.
0
2
0
1
3
,
J
u
n
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
5
1
/
i
t
m
c
o
n
f
/
2
0
2
3
5
3
0
2
0
1
3
.
[
6
]
J.
M
.
S
.
V
.
R
.
K
u
m
a
r
,
B
.
S
u
j
a
t
h
a
,
a
n
d
N
.
Le
e
l
a
v
a
t
h
i
,
“
A
u
t
o
m
a
t
i
c
v
e
h
i
c
l
e
n
u
m
b
e
r
p
l
a
t
e
r
e
c
o
g
n
i
t
i
o
n
s
y
st
e
m
u
s
i
n
g
m
a
c
h
i
n
e
l
e
a
r
n
i
n
g
,
”
I
O
P
C
o
n
f
e
r
e
n
c
e
S
e
r
i
e
s:
M
a
t
e
ri
a
l
s
S
c
i
e
n
c
e
a
n
d
E
n
g
i
n
e
e
r
i
n
g
,
v
o
l
.
1
0
7
4
,
n
o
.
1
,
p
.
0
1
2
0
1
2
,
F
e
b
.
2
0
2
1
,
d
o
i
:
1
0
.
1
0
8
8
/
1
7
5
7
-
8
9
9
X
/
1
0
7
4
/
1
/
0
1
2
0
1
2
.
[
7
]
B
.
S
r
i
n
i
v
a
s
a
n
d
B
.
L
a
v
a
n
y
a
,
“
V
e
h
i
c
l
e
c
l
a
ssi
f
i
c
a
t
i
o
n
u
si
n
g
La
b
V
I
EW,”
i
n
2
0
1
9
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
I
n
t
e
l
l
i
g
e
n
t
S
u
s
t
a
i
n
a
b
l
e
S
y
s
t
e
m
s (I
C
I
S
S
)
,
F
e
b
.
2
0
1
9
,
p
p
.
2
6
7
–
2
7
0
,
d
o
i
:
1
0
.
1
1
0
9
/
I
S
S
1
.
2
0
1
9
.
8
9
0
7
9
7
8
.
[
8
]
P
.
K
u
l
k
a
r
n
i
,
A
.
K
h
a
t
r
i
,
P
.
B
a
n
g
a
,
a
n
d
K
.
S
h
a
h
,
“
A
u
t
o
m
a
t
i
c
n
u
m
b
e
r
p
l
a
t
e
r
e
c
o
g
n
i
t
i
o
n
(
A
N
P
R
)
s
y
st
e
m
f
o
r
I
n
d
i
a
n
c
o
n
d
i
t
i
o
n
s
,
”
i
n
2
0
0
9
1
9
th
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
Ra
d
i
o
e
l
e
k
t
r
o
n
i
k
a
,
A
p
r
.
2
0
0
9
,
p
p
.
1
1
1
–
1
1
4
,
d
o
i
:
1
0
.
1
1
0
9
/
R
A
D
I
O
ELEK.2
0
0
9
.
5
1
5
8
7
6
3
.
[
9
]
M
.
Y
u
c
h
u
n
,
H
.
Y
i
n
g
h
o
n
g
,
Z.
K
u
n
,
a
n
d
L.
Z
h
u
a
n
g
,
“
G
e
n
e
r
a
l
a
p
p
l
i
c
a
t
i
o
n
r
e
sea
r
c
h
o
n
G
S
M
m
o
d
u
l
e
,
”
i
n
2
0
1
1
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
I
n
t
e
r
n
e
t
C
o
m
p
u
t
i
n
g
a
n
d
I
n
f
o
rm
a
t
i
o
n
S
e
rv
i
c
e
s
,
S
e
p
.
2
0
1
1
,
p
p
.
5
2
5
–
5
2
8
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
I
C
I
S
.
2
0
1
1
.
1
3
7
.
[
1
0
]
J.
P
a
n
g
,
“
V
a
r
i
a
n
c
e
w
i
n
d
o
w
b
a
se
d
c
a
r
l
i
c
e
n
se
p
l
a
t
e
l
o
c
a
l
i
z
a
t
i
o
n
,
”
J
o
u
r
n
a
l
o
f
C
o
m
p
u
t
e
r
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
s
,
v
o
l
.
0
2
,
n
o
.
9
,
p
p
.
6
1
–
6
9
,
2
0
1
4
,
d
o
i
:
1
0
.
4
2
3
6
/
j
c
c
.
2
0
1
4
.
2
9
0
0
9
.
[
1
1
]
Y
.
J.
C
h
o
o
n
g
,
L.
K
.
K
e
o
n
g
,
a
n
d
T.
C
.
C
h
e
a
h
,
“
L
i
c
e
n
s
e
p
l
a
t
e
n
u
mb
e
r
d
e
t
e
c
t
i
o
n
a
n
d
r
e
c
o
g
n
i
t
i
o
n
u
si
n
g
si
m
p
l
i
f
i
e
d
l
i
n
e
a
r
-
m
o
d
e
l
,
”
J
o
u
rn
a
l
o
f
C
ri
t
i
c
a
l
Re
v
i
e
ws
,
v
o
l
.
7
,
n
o
.
3
,
Ja
n
.
2
0
2
0
,
d
o
i
:
1
0
.
3
1
8
3
8
/
j
c
r
.
0
7
.
0
3
.
0
9
.
[
1
2
]
M
.
S
i
m
o
n
,
B
.
S
h
i
b
w
a
b
o
,
a
n
d
K
.
M
u
t
u
a
,
“
A
n
a
u
t
o
m
a
t
i
c
n
u
m
b
e
r
p
l
a
t
e
r
e
c
o
g
n
i
t
i
o
n
s
y
st
e
m
f
o
r
c
a
r
p
a
r
k
ma
n
a
g
e
m
e
n
t
,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
C
o
m
p
u
t
e
r A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
1
7
5
,
n
o
.
7
,
p
p
.
3
6
–
4
2
,
O
c
t
.
2
0
1
7
,
d
o
i
:
1
0
.
5
1
2
0
/
i
j
c
a
2
0
1
7
9
1
5
6
0
8
.
[
1
3
]
R
.
S
u
n
c
h
u
,
S
.
P
a
l
l
i
,
V
.
V
.
S
.
R
.
D
a
t
t
a
,
a
n
d
M
.
S
h
a
n
mu
g
a
s
u
n
d
a
r
a
m,
“
I
n
t
e
l
l
i
g
e
n
t
s
y
s
t
e
m
f
o
r
o
f
f
i
c
e
e
n
v
i
r
o
n
me
n
t
u
si
n
g
i
n
t
e
r
n
e
t
o
f
t
h
i
n
g
s,
”
i
n
2
0
1
9
3
r
d
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
T
re
n
d
s
i
n
E
l
e
c
t
r
o
n
i
c
s
a
n
d
I
n
f
o
rm
a
t
i
c
s
(
I
C
O
EI
)
,
A
p
r
.
2
0
1
9
,
p
p
.
7
1
7
–
7
2
1
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
O
EI
.
2
0
1
9
.
8
8
6
2
6
8
9
.
[
1
4
]
S
.
N
.
G
u
j
a
r
,
J
.
R
.
P
a
n
c
h
a
l
,
a
n
d
L.
K
.
W
a
n
i
,
“
I
mp
r
o
v
i
n
g
safe
t
y
w
i
t
h
o
b
s
t
a
c
l
e
d
e
t
e
c
t
i
o
n
a
n
d
t
r
a
c
k
f
o
l
l
o
w
i
n
g
c
a
r
u
s
i
n
g
s
e
n
s
o
r
,
G
P
S
a
n
d
G
S
M
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
R
e
se
a
rc
h
i
n
E
n
g
i
n
e
e
ri
n
g
a
n
d
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
0
3
,
n
o
.
1
5
,
p
p
.
4
6
–
5
2
,
2
0
1
4
,
d
o
i
:
1
0
.
1
5
6
2
3
/
i
j
r
e
t
.
2
0
1
4
.
0
3
1
5
0
1
0
.
[
1
5
]
K
.
M
.
B
a
b
u
a
n
d
M
.
V
R
a
g
h
u
n
a
d
h
,
“
V
e
h
i
c
l
e
n
u
mb
e
r
p
l
a
t
e
d
e
t
e
c
t
i
o
n
a
n
d
r
e
c
o
g
n
i
t
i
o
n
u
si
n
g
b
o
u
n
d
i
n
g
b
o
x
met
h
o
d
,
”
i
n
2
0
1
6
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
A
d
v
a
n
c
e
d
C
o
m
m
u
n
i
c
a
t
i
o
n
C
o
n
t
ro
l
a
n
d
C
o
m
p
u
t
i
n
g
T
e
c
h
n
o
l
o
g
i
e
s
(
I
C
A
C
C
C
T
)
,
M
a
y
2
0
1
6
,
p
p
.
1
0
6
–
1
1
0
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
A
C
C
C
T
.
2
0
1
6
.
7
8
3
1
6
1
0
.
[
1
6
]
S
.
Jo
sh
i
,
P
.
J
e
j
u
r
e
,
C
.
J
a
d
h
a
v
,
a
n
d
V
.
Jan
k
a
r
,
“
A
u
t
o
ma
t
i
c
n
u
mb
e
r
p
l
a
t
e
r
e
c
o
g
n
i
t
i
o
n
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
S
c
i
e
n
t
i
f
i
c
Re
s
e
a
r
c
h
i
n
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
1
1
,
n
o
.
5
,
p
p
.
4
3
9
–
4
4
8
,
A
p
r
.
2
0
2
4
,
d
o
i
:
1
0
.
3
2
6
2
8
/
I
JS
R
S
T2
4
1
1
4
7
6
.
[
1
7
]
N
.
A
.
K
h
a
n
a
n
d
M
.
F
.
B
i
n
H
a
f
i
z
,
“
A
d
v
a
n
c
e
d
t
e
c
h
n
i
q
u
e
s
f
o
r
i
m
p
r
o
v
e
d
b
a
n
g
l
a
d
e
sh
i
n
u
mb
e
r
p
l
a
t
e
d
e
t
e
c
t
i
o
n
a
n
d
c
h
a
r
a
c
t
e
r
r
e
c
o
g
n
i
t
i
o
n
i
n
a
u
t
o
m
a
t
e
d
p
a
r
k
i
n
g
s
y
st
e
ms,”
I
n
d
o
n
e
si
a
n
J
o
u
r
n
a
l
o
f
E
l
e
c
t
ri
c
a
l
En
g
i
n
e
e
ri
n
g
a
n
d
I
n
f
o
rm
a
t
i
c
s
(
I
J
E
E
I
)
,
v
o
l
.
1
2
,
n
o
.
2
,
Ju
n
.
2
0
2
4
,
d
o
i
:
1
0
.
5
2
5
4
9
/
i
j
e
e
i
.
v
1
2
i
2
.
5
4
7
7
.
[
1
8
]
R
.
R
.
C
h
a
n
d
r
i
k
a
,
K
.
V
a
n
i
t
h
a
,
A
.
T
h
a
h
a
see
n
,
C
.
R
,
V
.
N
e
e
r
u
g
a
t
t
i
,
a
n
d
M
.
T.
R
,
“
N
u
m
b
e
r
p
l
a
t
e
r
e
c
o
g
n
i
t
i
o
n
u
s
i
n
g
O
p
e
n
C
V
,
”
i
n
2
0
2
4
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
Em
e
r
g
i
n
g
S
m
a
r
t
C
o
m
p
u
t
i
n
g
a
n
d
I
n
f
o
rm
a
t
i
c
s
(
E
S
C
I
)
,
M
a
r
.
2
0
2
4
,
p
p
.
1
–
4
,
d
o
i
:
1
0
.
1
1
0
9
/
ESCI
5
9
6
0
7
.
2
0
2
4
.
1
0
4
9
7
2
5
3
.
[
1
9
]
H
.
D
a
s
,
P
.
K
.
S
a
h
u
,
a
n
d
K
.
K
h
a
n
i
k
a
r
,
“
A
I
-
b
a
s
e
d
l
i
c
e
n
s
e
p
l
a
t
e
d
e
t
e
c
t
i
o
n
o
f
o
n
-
r
o
a
d
v
e
h
i
c
l
e
,
”
i
n
2
0
2
3
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
M
i
c
r
o
w
a
v
e
,
O
p
t
i
c
a
l
,
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
E
n
g
i
n
e
e
r
i
n
g
(
I
C
M
O
C
E
)
,
M
a
y
2
0
2
3
,
p
p
.
1
–
4
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
M
O
C
E
5
7
8
1
2
.
2
0
2
3
.
1
0
1
6
7
1
1
5
.
[
2
0
]
V
.
A
g
a
r
w
a
l
a
n
d
G
.
B
a
n
s
a
l
,
“
A
u
t
o
ma
t
i
c
n
u
mb
e
r
p
l
a
t
e
d
e
t
e
c
t
i
o
n
a
n
d
r
e
c
o
g
n
i
t
i
o
n
u
si
n
g
Y
O
LO
w
o
r
l
d
,
”
C
o
m
p
u
t
e
rs
a
n
d
El
e
c
t
ri
c
a
l
En
g
i
n
e
e
ri
n
g
,
v
o
l
.
1
2
0
,
p
.
1
0
9
6
4
6
,
D
e
c
.
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
o
m
p
e
l
e
c
e
n
g
.
2
0
2
4
.
1
0
9
6
4
6
.
[
2
1
]
K
.
G
,
P
.
E
,
A
.
S
,
a
n
d
D
.
V
,
“
A
n
e
f
f
i
c
i
e
n
t
d
e
e
p
l
e
a
r
n
i
n
g
a
p
p
r
o
a
c
h
f
o
r
a
u
t
o
mat
i
c
l
i
c
e
n
se
p
l
a
t
e
d
e
t
e
c
t
i
o
n
w
i
t
h
n
o
v
e
l
f
e
a
t
u
r
e
e
x
t
r
a
c
t
i
o
n
,
”
Pr
o
c
e
d
i
a
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
,
v
o
l
.
2
3
5
,
p
p
.
2
8
2
2
–
2
8
3
2
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
p
r
o
c
s
.
2
0
2
4
.
0
4
.
2
6
7
.
[
2
2
]
T.
M
a
n
i
k
u
mar,
S
.
B
a
l
a
mu
r
i
g
a
n
,
J.
R
a
g
a
v
e
n
t
h
i
r
a
n
,
M
.
I
sl
a
b
u
d
h
e
e
n
,
K
.
V
e
n
k
a
t
e
s
h
,
a
n
d
S
.
K
u
m
a
r
a
p
p
a
n
,
“
Li
c
e
n
se
p
l
a
t
e
r
e
c
o
g
n
i
t
i
o
n
u
si
n
g
c
o
m
p
u
t
e
r
v
i
si
o
n
,
”
C
h
a
l
l
e
n
g
e
s
i
n
I
n
f
o
rm
a
t
i
o
n
,
C
o
m
m
u
n
i
c
a
t
i
o
n
a
n
d
C
o
m
p
u
t
i
n
g
T
e
c
h
n
o
l
o
g
y
,
p
p
.
1
4
7
–
1
5
1
,
2
0
2
4
,
d
o
i
:
1
0
.
1
2
0
1
/
9
7
8
1
0
0
3
5
5
9
0
8
5
-
26.
[
2
3
]
S
.
R
a
j
,
Y
.
G
u
p
t
a
,
a
n
d
R
.
M
a
l
h
o
t
r
a
,
“
Li
c
e
n
se
p
l
a
t
e
r
e
c
o
g
n
i
t
i
o
n
sy
s
t
e
m
u
si
n
g
Y
o
l
o
v
5
a
n
d
C
N
N
,
”
i
n
2
0
2
2
8
th
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
A
d
v
a
n
c
e
d
C
o
m
p
u
t
i
n
g
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
S
y
st
e
m
s
(
I
C
A
C
C
S
)
,
M
a
r
.
2
0
2
2
,
p
p
.
3
7
2
–
3
7
7
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
A
C
C
S
5
4
1
5
9
.
2
0
2
2
.
9
7
8
4
9
6
6
.
[
2
4
]
K
.
K
u
m
a
w
a
t
,
A
.
Ja
i
n
,
a
n
d
N
.
T
i
w
a
r
i
,
“
R
e
l
e
v
a
n
c
e
o
f
a
u
t
o
ma
t
i
c
n
u
m
b
e
r
p
l
a
t
e
r
e
c
o
g
n
i
t
i
o
n
sy
s
t
e
m
s
i
n
v
e
h
i
c
l
e
t
h
e
f
t
d
e
t
e
c
t
i
o
n
,
”
i
n
RAi
S
E
-
2
0
2
3
,
Ja
n
.
2
0
2
4
,
p
.
1
8
5
,
d
o
i
:
1
0
.
3
3
9
0
/
e
n
g
p
r
o
c
2
0
2
3
0
5
9
1
8
5
.
[
2
5
]
F
.
R
a
h
u
t
o
mo
,
I
.
D
e
r
r
y
,
M
.
A
n
w
a
r
,
S
.
P
r
a
m
o
n
o
,
a
n
d
M
.
H
.
I
b
r
a
h
i
m
,
“
V
e
h
i
c
l
e
sp
e
e
d
e
s
t
i
ma
t
i
o
n
sy
st
e
m
a
n
d
a
u
t
o
ma
t
i
c
l
i
c
e
n
se
p
l
a
t
e
r
e
c
o
g
n
i
t
i
o
n
u
s
i
n
g
Y
o
l
o
v
8
a
n
d
E
a
sy
O
C
R
o
n
t
r
a
f
f
i
c
c
a
me
r
a
f
o
o
t
a
g
e
,
”
i
n
2
0
2
4
I
E
EE
2
nd
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
E
l
e
c
t
ri
c
a
l
E
n
g
i
n
e
e
ri
n
g
,
C
o
m
p
u
t
e
r
a
n
d
I
n
f
o
r
m
a
t
i
o
n
T
e
c
h
n
o
l
o
g
y
(
I
C
E
EC
I
T
)
,
N
o
v
.
2
0
2
4
,
p
p
.
1
8
–
2
2
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
EE
C
I
T6
3
6
9
8
.
2
0
2
4
.
1
0
8
5
9
8
9
8
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
Evaluation Warning : The document was created with Spire.PDF for Python.