I
nte
rna
t
io
na
l J
o
urna
l o
f
Adv
a
nces in Applie
d Science
s
(
I
J
AAS)
Vo
l.
14
,
No
.
3
,
Sep
tem
b
er
20
25
,
p
p
.
9
7
5
~
9
8
4
I
SS
N:
2252
-
8
8
1
4
,
DOI
:
1
0
.
1
1
5
9
1
/ijaas
.
v14.
i
3
.
p
p
9
7
5
-
9
8
4
975
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
a
a
s
.
ia
esco
r
e.
co
m
Sea
rcha
ble enc
ry
ption ba
sed o
n a
c
ha
o
tic
sy
stem
a
nd
AES
a
lg
o
rithm
F
a
iro
uz
Sh
er
a
li
1
,
F
a
la
h
Sa
rha
n
2
1
D
e
p
a
r
t
me
n
t
o
f
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
,
C
o
l
l
e
g
e
o
f
E
d
u
c
a
t
i
o
n
f
o
r
G
i
r
l
s
,
K
u
f
a
U
n
i
v
e
r
s
i
t
y
,
K
u
f
a
,
I
r
a
q
2
D
e
p
a
r
t
me
n
t
o
f
M
a
t
h
e
m
a
t
i
c
s
,
C
o
l
l
e
g
e
o
f
E
d
u
c
a
t
i
o
n
f
o
r
G
i
r
l
s
K
u
f
a
U
n
i
v
e
r
si
t
y
,
K
u
f
a
,
I
r
a
q
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
No
v
1
4
,
2
0
2
4
R
ev
is
ed
Ma
y
1
8
,
2
0
2
5
Acc
ep
ted
J
u
n
8
,
2
0
2
5
Clo
u
d
c
o
m
p
u
ti
n
g
p
ro
v
id
e
s
on
-
d
e
m
a
n
d
a
c
c
e
ss
to
c
o
m
p
u
ti
n
g
re
so
u
rc
e
s,
su
c
h
as
sto
ra
g
e
a
n
d
p
ro
c
e
ss
in
g
p
o
we
r.
Th
is
tec
h
n
o
l
o
g
y
a
ll
o
ws
b
u
sin
e
ss
e
s
to
sc
a
le
e
fficie
n
tl
y
w
h
il
e
re
d
u
c
i
n
g
in
fra
stru
c
tu
re
c
o
sts.
Ho
we
v
e
r,
p
ro
te
c
ti
n
g
th
e
se
c
u
rit
y
a
n
d
p
ri
v
a
c
y
of
d
a
ta
h
a
s
g
r
o
wn
to
be
a
to
p
p
rio
r
it
y
.
T
h
i
s
is
wh
e
re
e
n
h
a
n
c
in
g
c
l
o
u
d
se
c
u
ri
ty
with
se
a
rc
h
a
b
le
e
n
c
ry
p
ti
o
n
(S
E)
is
c
ru
c
ial.
S
E
e
ffe
c
ti
v
e
ly
se
c
u
re
s
u
se
rs’
se
n
siti
v
e
d
a
ta
wh
il
e
p
re
se
rv
in
g
se
a
rc
h
a
b
i
li
ty
on
t
h
e
c
lo
u
d
se
rv
e
r
si
d
e
.
It
e
n
a
b
les
th
e
c
lo
u
d
se
rv
e
r
to
se
a
rc
h
v
ia
e
n
c
r
y
p
ted
d
a
ta
with
o
u
t
d
isc
lo
sin
g
i
n
fo
rm
a
ti
o
n
in
p
lain
tex
t
d
a
ta.
SE
u
se
s
d
iffere
n
t
e
n
c
ry
p
t
io
n
m
e
th
o
d
s
to
e
n
c
r
y
p
t
d
a
ta
b
e
f
o
r
e
u
p
lo
a
d
in
g
it
to
se
rv
e
rs
.
Th
e
a
d
v
a
n
c
e
d
e
n
c
ry
p
ti
o
n
sta
n
d
a
rd
(AES
)
is
a
c
o
m
m
o
n
a
lg
o
r
it
h
m
fo
r
e
n
c
ry
p
ti
n
g
th
is
d
a
ta.
In
th
is
p
a
p
e
r,
a
n
o
v
e
l
SE
m
e
th
o
d
h
a
s
b
e
e
n
p
re
se
n
ted
.
Th
e
tec
h
n
i
q
u
e
e
x
p
lo
it
s
th
e
p
r
o
p
e
rti
e
s
of
t
h
e
c
h
a
o
t
ic
map
to
g
e
n
e
ra
te
a
n
AE
S
k
e
y
,
w
h
ich
m
a
k
e
s
th
e
AES
a
lg
o
rit
h
m
m
o
re
se
c
u
re
f
o
r
e
n
c
ry
p
ti
n
g
th
e
se
a
rc
h
a
b
le
i
n
d
e
x
a
n
d
u
p
l
o
a
d
e
d
fil
e
s.
We
im
p
lem
e
n
t
a
n
d
tes
t
o
u
r
m
e
th
o
d
wit
h
re
a
l
d
a
ta
f
ro
m
fil
e
s.
Th
e
e
x
p
e
rime
n
tal
re
su
lt
s
sh
o
w
t
h
a
t
th
e
p
ro
p
o
se
d
m
e
th
o
d
can
si
g
n
ifi
c
a
n
t
ly
sa
ti
sfy
a
h
i
g
h
e
r
lev
e
l
of
se
c
u
rit
y
as
c
o
m
p
a
re
d
to
o
t
h
e
r
sc
h
e
m
e
s.
K
ey
w
o
r
d
s
:
Ad
v
an
ce
d
e
n
cr
y
p
tio
n
s
tan
d
ar
d
C
h
ao
tic
m
ap
s
C
lo
u
d
co
m
p
u
tin
g
Hén
o
n
m
ap
Sear
ch
ab
le
en
cr
y
p
tio
n
T
h
is
is
an
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r
th
e
CC
BY
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Fair
o
u
z
Sh
er
ali
Dep
ar
tm
en
t
of
C
o
m
p
u
ter
Scie
n
ce
,
C
o
lleg
e
o
f
E
d
u
ca
tio
n
f
o
r
Gir
ls
,
Ku
f
a
Un
iv
er
s
ity
Ku
f
a,
Naja
f
0
0
9
6
4
,
I
r
a
q
E
m
ail:
f
air
o
o
zm
.
jaaf
a
r
@
u
o
k
u
f
a.
ed
u
.
iq
1.
I
NT
RO
D
UCT
I
O
N
C
lo
u
d
co
m
p
u
tin
g
o
f
f
e
r
s
a
ce
n
tr
alize
d
r
ep
o
s
ito
r
y
of
c
o
m
p
u
tin
g
r
eso
u
r
ce
s
th
at
ca
n
be
q
u
ick
ly
an
d
elastically
ac
ce
s
s
ed
b
ased
on
u
s
er
s
’
d
em
an
d
.
T
h
is
tech
n
o
lo
g
y
is
r
ap
id
ly
d
ev
elo
p
in
g
an
d
b
ein
g
wid
ely
u
s
ed
b
ec
au
s
e
of
its
m
an
y
b
e
n
ef
its
[
1
]
.
To
g
u
ar
a
n
tee
s
ec
u
r
ity
f
o
r
d
ata
s
to
r
ed
on
th
e
clo
u
d
,
it
is
cr
u
cial
to
ef
f
icien
tly
an
d
s
ec
u
r
ely
s
to
r
e
an
d
ac
ce
s
s
th
e
u
p
lo
ad
e
d
d
ata.
On
e
of
th
e
im
p
o
r
tan
t
way
s
to
p
r
o
tect
s
u
ch
d
ata
is
to
en
cr
y
p
t
it
b
ef
o
r
e
u
p
l
o
ad
in
g
[
2
]
.
T
o
d
ay
,
I
n
d
ex
in
g
an
d
s
ea
r
ch
in
g
clo
u
d
-
en
cr
y
p
ted
d
ata
h
as
b
ec
o
m
e
in
ter
esti
n
g
[
3
]
,
[
4
]
.
T
h
e
cr
y
p
to
g
r
a
p
h
ic
p
r
im
itiv
e
th
at
p
r
o
v
id
es
th
is
f
ea
tu
r
e
is
wid
ely
k
n
o
wn
as
s
ea
r
ch
ab
le
e
n
cr
y
p
tio
n
(
SE)
[
5
]
.
E
n
cr
y
p
tio
n
in
clu
d
es
ap
p
ly
in
g
an
asy
m
m
etr
ic
or
s
y
m
m
etr
ic
alg
o
r
ith
m
to
en
cr
y
p
t
th
e
d
ata.
Sy
m
m
etr
ic
en
cr
y
p
tio
n
u
s
es
one
k
e
y
f
o
r
en
cr
y
p
tio
n
a
n
d
d
ec
r
y
p
tio
n
o
p
er
a
tio
n
s
,
wh
ile
asy
m
m
etr
ic
en
cr
y
p
tio
n
u
s
e
s
a
p
air
of
d
if
f
er
en
t
k
ey
s
(
p
u
b
lic
an
d
p
r
i
v
ate
k
ey
s
)
.
T
h
er
e
a
r
e
v
ar
io
u
s
s
y
m
m
etr
ic
k
ey
en
c
r
y
p
tio
n
s
ch
em
es
lik
e
ad
v
an
ce
d
en
cr
y
p
tio
n
s
tan
d
ar
d
(
AE
S)
[
6
]
,
[
7
]
,
d
ata
en
cr
y
p
tio
n
s
tan
d
ar
d
(
DE
S),
3
DE
S
[
8
]
,
a
n
d
B
lo
wf
is
h
[
9
]
.
In
co
n
tem
p
o
r
ar
y
cr
y
p
to
g
r
ap
h
y
,
t
h
e
s
ec
u
r
ity
of
cr
y
p
to
g
r
ap
h
ic
s
y
s
tem
s
d
ep
en
d
s
on
h
ar
d
m
ath
em
atica
l
p
r
o
b
lem
s
lik
e
th
e
f
in
ite
f
ield
d
is
cr
ete
lo
g
ar
ith
m
p
r
o
b
lem
(
DL
P),
i
n
teg
er
f
ac
to
r
izatio
n
p
r
o
b
lem
(
I
FP
)
,
an
d
ellip
tic
-
c
u
r
v
e
DL
P
(
E
C
DL
P)
[
1
0
]
.
Nu
m
er
o
u
s
cr
y
p
to
g
r
ap
h
ic
m
eth
o
d
s
h
a
v
e
b
ee
n
s
u
g
g
ested
f
o
r
th
ese
p
r
o
b
lem
s
,
s
u
ch
as
El
-
Gam
al,
R
iv
est
–
Sh
am
ir
–
Ad
lem
an
(
R
SA
)
,
an
d
ellip
tic
cu
r
v
e
cr
y
p
t
o
g
r
a
p
h
y
(
E
C
C
)
[
1
1
]
.
C
h
ao
tic
s
ch
em
es
[
1
2
]
–
[
1
4
]
o
f
f
er
a
h
ig
h
er
lev
el
of
s
ec
u
r
it
y
an
d
s
tr
o
n
g
p
er
f
o
r
m
a
n
ce
f
o
r
r
ea
l
-
tim
e
en
cr
y
p
tio
n
,
wh
er
e
ch
ao
s
h
as
u
n
iq
u
e
attr
i
b
u
tes
s
tr
o
n
g
ly
r
ela
ted
to
th
e
c
o
n
ce
p
ts
of
co
n
f
u
s
i
o
n
an
d
d
if
f
u
s
io
n
in
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8
8
1
4
I
n
t J Ad
v
Ap
p
l Sci
,
Vo
l.
14
,
No
.
3
,
Sep
tem
b
er
20
25
:
975
-
9
8
4
976
cr
y
p
to
g
r
ap
h
y
.
E
x
am
p
les
of
th
ese
q
u
alities
in
clu
d
e
g
o
o
d
p
s
eu
d
o
-
r
a
n
d
o
m
n
ess
an
d
s
en
s
i
tiv
ity
to
its
co
n
tr
o
l
p
ar
am
eter
s
.
Fu
r
th
e
r
m
o
r
e
,
th
es
e
s
y
s
tem
s
ar
e
d
eter
m
in
is
tic,
m
ea
n
in
g
no
r
an
d
o
m
f
ac
t
o
r
s
ar
e
in
v
o
lv
ed
,
an
d
th
eir
s
ettin
g
s
en
tire
ly
d
eter
m
in
e
th
eir
f
u
tu
r
e
b
e
h
av
io
r
.
Ho
wev
er
,
b
ec
au
s
e
th
e
ch
ao
tic
s
ig
n
al
is
p
s
eu
d
o
r
an
d
o
m
,
u
n
au
th
o
r
ized
u
s
er
s
can
m
is
tak
e
it
f
o
r
n
o
is
e.
Fo
r
th
ese
r
ea
s
o
n
s
,
th
ey
s
ati
s
f
y
th
e
n
ee
d
s
of
r
ea
l
-
tim
e
ap
p
licatio
n
s
more
th
an
AE
S
an
d
DE
S.
C
o
n
tem
p
o
r
ar
y
r
esear
ch
h
as
ex
h
ib
ited
th
e
p
o
s
s
ib
ilit
y
of
u
s
in
g
ch
ao
tic
m
eth
o
d
s
in
cr
y
p
to
g
r
ap
h
y
.
Fo
r
in
s
tan
ce
,
m
an
y
attem
p
ts
h
av
e
s
u
cc
ess
f
u
lly
in
teg
r
ated
ch
ao
ti
c
m
ap
s
in
to
lig
h
tweig
h
t
en
c
r
y
p
tio
n
alg
o
r
ith
m
s
to
en
h
an
ce
s
ec
u
r
ity
.
C
o
m
b
in
in
g
ch
ao
tic
s
y
s
tem
s
en
h
an
ce
d
class
ical
en
cr
y
p
tio
n
alg
o
r
ith
m
s
’
co
n
f
u
s
io
n
an
d
d
if
f
u
s
io
n
c
h
ar
ac
ter
is
tics
,
in
cr
ea
s
in
g
th
eir
r
o
b
u
s
tn
ess
ag
ain
s
t
cr
y
p
tan
aly
s
is
[
1
5
]
.
I
n
th
e
s
am
e
c
o
n
tex
t,
s
ev
er
al
s
tu
d
ies
ap
p
lied
ch
ao
s
-
b
ased
k
e
y
g
e
n
er
atio
n
m
eth
o
d
s
to
e
n
h
an
ce
th
e
AE
S
alg
o
r
ith
m
.
T
h
er
e
ar
e
s
ev
er
al
is
s
u
es
with
s
tu
d
ies
th
at
u
s
e
th
e
lo
g
is
tic
m
ap
f
o
r
cr
y
p
to
g
r
ap
h
y
a
p
p
licatio
n
s
.
T
h
e
ch
o
ice
o
f
p
ar
a
m
eter
s
g
r
ea
tly
in
f
lu
en
ce
s
its
ch
ao
tic
b
eh
a
v
io
r
,
an
d
wh
en
it
is
n
o
t
with
in
th
e
o
p
tim
al
r
an
g
e,
s
ec
u
r
ity
is
d
im
in
is
h
ed
s
in
ce
it
b
ec
o
m
es
p
r
ed
ictab
le.
Per
io
d
icity
ca
n
r
esu
lt
f
r
o
m
d
ig
ital
s
y
s
tem
s
'
f
in
ite
ac
cu
r
ac
y
p
r
o
b
lem
s
an
d
lim
it
ed
k
e
y
s
p
ac
e,
leav
in
g
th
e
s
y
s
tem
o
p
en
to
s
tatis
tical
an
d
b
r
u
te
-
f
o
r
ce
attac
k
s
.
Fu
r
th
er
m
o
r
e
,
th
e
s
y
s
tem
m
ay
b
ec
o
m
e
less
s
af
e
an
d
d
eter
m
in
is
tic
if
th
e
p
ar
am
eter
s
a
r
e
ch
o
s
en
in
co
r
r
ec
tly
,
lo
s
in
g
its
ch
ao
tic
ch
ar
ac
ter
is
tics
[
1
6
]
.
No
twith
s
tan
d
in
g
th
e
ad
v
an
ta
g
es
of
clo
u
d
co
m
p
u
tin
g
,
th
e
r
e
ar
e
s
till
p
r
o
b
lem
s
an
d
d
i
f
f
icu
lties
in
g
u
ar
an
teein
g
u
p
lo
ad
e
d
d
ata’
s
s
ec
u
r
ity
,
co
n
f
i
d
en
tiality
,
in
t
eg
r
ity
,
a
n
d
av
ailab
ilit
y
(
C
I
A)
.
To
s
o
lv
e
th
ese
p
r
o
b
lem
s
,
u
s
er
s
en
cr
y
p
t
th
eir
f
iles
b
ef
o
r
e
u
p
lo
ad
in
g
th
em
to
th
e
clo
u
d
.
AE
S
is
one
of
t
h
e
m
o
s
t
wid
ely
u
s
ed
s
y
m
m
etr
ic
en
cr
y
p
tio
n
alg
o
r
ith
m
s
due
to
its
ef
f
ec
tiv
en
ess
an
d
r
esil
ien
ce
.
Ho
wev
er
,
co
n
s
id
er
in
g
th
e
in
cr
ea
s
in
g
p
r
o
ce
s
s
in
g
p
o
wer
an
d
ev
o
lv
in
g
s
ec
u
r
ity
r
is
k
s
,
f
o
r
tify
in
g
its
d
ef
en
ce
s
ag
ain
s
t
cr
y
p
to
g
r
ap
h
ic
attac
k
s
is
im
p
er
ativ
e.
In
ce
r
tain
s
o
p
h
is
ticated
ass
au
lt
s
ce
n
ar
io
s
,
th
e
s
t
atic
s
u
b
s
titu
tio
n
an
d
p
er
m
u
tat
io
n
p
r
o
ce
s
s
es
th
at
f
o
r
m
t
he
b
asis
of
co
n
v
en
tio
n
a
l
AE
S
m
ig
h
t
be
p
r
ed
ictab
le.
C
h
ao
tic
s
y
s
tem
s
,
s
u
ch
as
th
e
Hén
o
n
m
a
p
,
ex
h
ib
it
d
y
n
am
ic
an
d
s
u
r
p
r
is
in
g
b
eh
av
io
r
,
w
h
ich
m
a
k
es
th
em
a
p
p
ea
lin
g
ch
o
ices
f
o
r
im
p
r
o
v
in
g
cr
y
p
to
g
r
ap
h
ic
tech
n
iq
u
es.
E
n
c
r
y
p
tio
n
p
r
o
ce
d
u
r
es
co
u
l
d
b
ec
o
m
e
m
o
r
e
u
n
p
r
ed
ictab
le
by
in
te
g
r
atin
g
t
h
e
Hén
o
n
ch
ao
tic
s
y
s
tem
,
en
h
an
cin
g
AE
S'
s
s
ec
u
r
ity
an
d
r
o
b
u
s
tn
ess
.
T
h
e
m
ain
c
o
n
tr
ib
u
tio
n
s
to
t
h
is
wo
r
k
ar
e:
d
ev
elo
p
in
g
a
n
ew
im
ag
e
en
c
r
y
p
tio
n
alg
o
r
i
th
m
wh
ile
m
ain
tain
in
g
th
e
alg
o
r
ith
m
'
s
ef
f
icac
y
a
n
d
u
tili
ty
p
o
s
es
ch
allen
g
es
to
im
p
lem
en
tati
o
n
an
d
ev
al
u
atio
n
.
I
n
v
esti
g
ate
wh
eth
er
u
s
in
g
Hé
n
o
n
ch
ao
tic
s
y
s
tem
s
is
b
etter
t
h
an
u
s
in
g
th
e
lo
g
is
tic
m
a
p
to
i
m
p
r
o
v
e
AE
S
wh
ile
m
ain
tain
in
g
a
b
alan
ce
b
etwe
en
in
cr
ea
s
ed
s
ec
u
r
ity
an
d
c
o
m
p
u
tin
g
e
f
f
icien
cy
.
Fin
ally
,
ass
es
s
th
e
p
r
o
p
o
s
ed
im
ag
e
en
cr
y
p
tio
n
m
eth
o
d
with
m
an
y
ev
al
u
atio
n
m
etr
ics,
s
u
ch
as
th
e
v
is
ib
ilit
y
test
,
in
f
o
r
m
atio
n
en
tr
o
p
y
an
aly
s
is
,
p
ea
k
s
ig
n
al
-
to
-
n
o
is
e
r
atio
(
PS
NR
)
,
n
u
m
b
er
o
f
p
ix
e
l
ch
an
g
e
r
ate
(
NPC
R
)
,
u
n
if
ied
av
er
ag
e
c
h
an
g
in
g
(
UACI)
,
an
d
co
r
r
elatio
n
co
e
f
f
icien
t
.
T
h
e
ev
alu
atio
n
r
esu
lts
of
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
ar
e
co
m
p
ar
e
d
with
th
e
class
ical
AE
S
en
cr
y
p
tio
n
al
g
o
r
ith
m
.
T
h
e
r
est
of
t
h
e
ar
ticle
is
o
r
g
a
n
ized
as
f
o
llo
ws.
Sectio
n
2
r
e
v
iews
th
e
liter
atu
r
e
th
at
e
m
p
l
o
y
s
ch
ao
tic
m
ap
s
in
im
ag
e
en
c
r
y
p
tio
n
al
g
o
r
ith
m
s
.
Sectio
n
3
ex
p
lain
s
th
e
r
esear
ch
m
eth
o
d
o
lo
g
y
u
s
ed
in
th
is
p
ap
e
r
to
ac
h
iev
e
th
e
s
tu
d
y
’
s
o
b
jectiv
e
s
.
Sectio
n
4
d
escr
ib
es
th
e
p
r
o
p
o
s
ed
im
ag
e
en
cr
y
p
tio
n
a
p
p
r
o
ac
h
,
d
etailin
g
its
s
tr
u
ctu
r
e,
wo
r
k
f
lo
w,
a
n
d
k
e
y
f
ea
tu
r
es.
Sectio
n
5
e
v
alu
a
tes
th
e
p
er
f
o
r
m
an
ce
of
th
e
pr
o
p
o
s
ed
m
eth
o
d
,
ex
am
in
in
g
its
ef
f
icien
cy
,
s
ec
u
r
ity
,
an
d
r
o
b
u
s
tn
ess
th
r
o
u
g
h
v
ar
io
u
s
m
etr
ics.
Fin
ally
,
s
ec
tio
n
5
s
u
m
m
ar
izes
th
e
k
ey
f
in
d
in
g
s
of
th
is
wo
r
k
,
d
is
cu
s
s
in
g
th
e
s
tr
en
g
th
s
an
d
p
o
ten
tial
i
m
p
r
o
v
em
en
ts
of
th
e
p
r
o
p
o
s
ed
m
eth
o
d
.
Qiao
et
al
.
[
1
7
]
p
r
o
p
o
s
ed
a
s
ec
u
r
e
,
r
o
b
u
s
t
cr
y
p
to
s
y
s
tem
th
at
u
s
es
th
e
AE
S
s
u
b
s
titu
t
io
n
-
b
o
x
es
(S
-
B
o
x
)
an
d
ch
a
o
tic
co
m
p
o
n
en
ts
.
It
in
clu
d
es
a
b
lo
ck
cip
h
er
,
a
g
lo
b
al
d
if
f
u
s
io
n
,
an
d
an
ef
f
ec
tiv
e
p
s
eu
d
o
-
ch
a
o
tic
n
u
m
b
er
g
en
e
r
ato
r
(
PC
NG)
.
W
h
en
ch
ao
tic
m
ap
s
f
o
r
m
ed
o
v
er
r
ea
l
n
u
m
b
er
s
ar
e
n
u
m
er
ically
ap
p
lied
,
th
e
PC
NG
d
ef
in
ed
on
a
f
in
ite
f
ield
r
e
d
u
ce
s
th
e
p
o
s
s
ib
ilit
y
of
s
ec
u
r
ity
d
eg
r
ad
ati
o
n
o
r
ig
in
atin
g
f
r
o
m
th
e
d
y
n
a
m
ical
d
eg
r
a
d
atio
n
.
To
en
cr
y
p
t
d
ata
,
th
e
s
tu
d
y
[
1
8
]
p
r
o
p
o
s
es
a
u
n
iq
u
e
an
d
e
f
f
icien
t
ap
p
r
o
ac
h
th
at
ap
p
lies
in
ter
lace
d
v
alu
e
-
lo
ca
tio
n
s
cr
am
b
lin
g
to
cr
ea
te
a
ch
ao
tic
s
tr
u
ctu
r
e.
Per
m
u
tatio
n
an
d
d
if
f
u
s
io
n
wer
e
h
an
d
led
as
in
d
ep
en
d
en
t
o
p
er
atio
n
s
in
th
e
p
r
ev
i
o
u
s
r
esear
ch
;
one
w
as
s
tar
ted
af
ter
th
e
o
th
e
r
w
as
f
in
is
h
ed
.
Usi
n
g
k
n
o
wn
-
te
x
t
attac
k
s
,
th
is
m
eth
o
d
en
ab
les
th
e
d
is
co
v
er
y
of
t
h
e
tr
an
s
f
o
r
m
atio
n
m
atr
i
x
.
T
h
e
s
u
g
g
ested
m
eth
o
d
,
h
o
wev
er
,
c
o
m
b
in
es
th
e
two
d
i
s
tin
ct
p
r
o
ce
s
s
es
in
to
a
s
in
g
le
in
ter
wo
v
en
iter
atio
n
.
In
th
eir
s
tu
d
y
,
Ç
av
u
ş
o
ğ
l
u
et
al
.
[
1
9
]
cr
ea
ted
a
n
o
v
el
ch
a
o
s
-
b
ased
r
an
d
o
m
n
u
m
b
er
g
e
n
er
at
o
r
(
R
NG)
.
T
h
ey
d
ev
elo
p
ed
an
S
-
B
o
x
g
en
er
atio
n
alg
o
r
ith
m
an
d
r
ea
l
ized
th
e
p
er
f
o
r
m
an
ce
test
s
of
th
e
S
-
B
o
x
.
T
h
e
p
r
o
p
o
s
ed
h
y
b
r
id
CS
-
AE
S
m
eth
o
d
s
ar
e
u
s
ed
to
en
cr
y
p
t
im
a
g
es.
E
x
am
in
in
g
th
e
p
r
o
p
o
s
ed
CS
-
AE
S
alg
o
r
ith
m
p
r
o
v
e
d
th
at
th
is
alg
o
r
ith
m
h
as
h
ig
h
er
s
ec
u
r
ity
th
an
AE
S
an
d
ch
ao
s
.
Ar
tu
ğ
er
an
d
Özk
ay
n
ak
[
2
0
]
p
r
esen
ted
two
alg
o
r
i
th
m
s
to
en
h
an
ce
th
e
p
r
o
b
lem
of
n
o
n
lin
ea
r
ity
v
alu
es
of
ch
a
o
s
-
b
ased
S
-
B
o
x
s
tr
u
ct
u
r
es.
T
h
e
f
ir
s
t
p
r
o
p
o
s
ed
p
o
s
t
-
p
r
o
ce
s
s
in
g
alg
o
r
ith
m
ca
n
i
m
p
r
o
v
e
n
o
n
lin
ea
r
ity
v
alu
es
up
to
1
1
1
.
5
.
T
h
e
n
,
th
e
s
ec
o
n
d
alg
o
r
ith
m
tak
es
th
e
S
-
B
o
x
o
p
tim
ized
by
th
e
f
ir
s
t
alg
o
r
ith
m
as
in
p
u
t,
an
d
th
e
elem
en
ts
ar
e
r
ep
lace
d
s
eq
u
en
tially
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ad
v
Ap
p
l Sci
I
SS
N:
2252
-
8
8
1
4
S
ea
r
ch
a
b
le
e
n
cryp
tio
n
b
a
s
ed
o
n
a
c
h
a
o
tic
s
ystem
a
n
d
A
E
S
a
lg
o
r
ith
m
(
F
a
ir
o
u
z
S
h
era
li
)
977
L
o
g
is
tic
m
ap
s
ar
e
th
e
f
o
u
n
d
ati
o
n
of
th
e
al
g
o
r
ith
m
th
at
Ar
if
et
al
.
[
2
1
]
s
u
g
g
ested
.
Usi
n
g
t
h
e
p
lain
tex
t
p
ictu
r
e,
th
e
s
u
g
g
ested
ap
p
r
o
ac
h
cr
ea
tes
a
h
ash
.
T
h
is
h
ash
is
th
en
s
p
lit
in
to
f
o
u
r
p
ar
ts
,
each
of
wh
ich
s
er
v
es
as
an
in
itial
p
ar
am
eter
in
p
u
t
f
o
r
th
e
lo
g
is
tic
m
ap
s
,
wh
ich
p
r
o
d
u
ce
f
o
u
r
ar
r
ay
s
of
p
s
eu
d
o
r
an
d
o
m
n
u
m
b
e
r
s
.
T
h
e
f
ir
s
t
an
d
s
ec
o
n
d
k
ey
s
ar
e
th
en
u
s
ed
by
th
e
m
eth
o
d
to
ex
ec
u
te
r
o
w
an
d
co
lu
m
n
p
e
r
m
u
tatio
n
s
,
r
esp
ec
tiv
ely
.
T
h
e
th
ir
d
k
e
y
is
u
s
ed
to
co
n
d
u
ct
an
ex
clu
s
iv
e
o
r
(
XOR
)
o
p
er
ati
o
n
on
th
e
r
esu
ltan
t
im
ag
e.
T
h
e
f
in
al
s
tep
is
to
u
s
e
th
e
f
o
u
r
t
h
p
r
o
d
u
ce
d
k
ey
to
do
a
s
u
b
s
titu
tio
n
on
th
e
im
a
g
e
u
s
in
g
eith
er
AE
S
S
-
B
o
x
or
AE
S
r
ev
er
s
e
S
-
B
o
x
.
Nev
er
th
eless
,
Ar
if
et
al
.
[
2
1
]
s
u
g
g
ested
ap
p
r
o
ac
h
is
in
ef
f
ec
ti
v
e
in
ter
m
s
of
en
cr
y
p
tio
n
tim
e
.
Hu
a
et
al
.
[
2
2
]
d
ev
el
o
p
ed
an
im
ag
e
en
cr
y
p
tio
n
s
ch
em
e
b
a
s
ed
on
a
2D
ch
a
o
tic
m
ap
.
T
h
ey
cr
ea
ted
two
m
atr
ices
u
s
in
g
a
2D
s
in
e
-
lo
g
is
tic
m
ap
.
T
h
e
s
u
g
g
ested
ap
p
r
o
ac
h
r
a
n
d
o
m
ly
s
h
u
f
f
les
th
e
im
ag
e
p
ix
el
p
o
s
itio
n
s
u
s
in
g
o
n
e
of
th
e
c
r
e
ated
m
atr
ices
by
j
o
in
in
g
p
ix
e
ls
in
v
ar
io
u
s
r
o
ws
an
d
c
o
lu
m
n
s
in
to
cir
cles
an
d
m
o
v
in
g
t
h
em
with
in
th
e
cir
cle
s
.
T
h
e
tech
n
iq
u
e
t
h
en
u
s
es
th
e
p
ix
el
v
alu
es
of
th
e
r
esu
ltan
t
p
er
m
u
ted
im
a
g
e
to
p
er
f
o
r
m
r
o
w
a
n
d
co
l
u
m
n
s
u
b
s
titu
tio
n
s
.
T
h
e
s
ec
o
n
d
m
atr
ix
is
u
s
ed
to
r
ep
ea
t
t
h
e
d
if
f
u
s
io
n
an
d
co
n
f
u
s
io
n
s
tep
s
.
Sh
ar
iatza
d
eh
et
al
.
[
2
3
]
s
u
g
g
ested
a
n
ew
im
ag
e
en
cr
y
p
tio
n
m
eth
o
d
d
u
b
b
e
d
d
y
n
am
ic
AE
S,
wh
ich
co
m
b
in
es
th
e
AE
S
with
th
e
lo
g
is
tic
ch
ao
tic
m
ap
.
T
h
e
lo
g
i
s
tic
m
ap
is
u
s
ed
to
g
en
er
ate
th
e
en
cr
y
p
tio
n
k
e
y
,
wh
ich
is
th
en
co
m
b
in
ed
with
th
e
en
cr
y
p
tio
n
d
ata
at
d
if
f
er
e
n
t
p
o
in
ts
in
tim
e.
A
cu
s
to
m
ize
d
v
ar
ian
t
of
AE
S
is
u
s
ed
to
u
tili
ze
th
e
p
r
o
ce
s
s
in
g
p
o
wer
of
Galo
is
Field
28.
T
h
e
s
u
g
g
ested
ap
p
r
o
ac
h
o
u
tp
er
f
o
r
m
s
m
an
y
of
th
e
cu
r
r
en
t
im
a
g
e
en
c
r
y
p
tio
n
te
ch
n
iq
u
es,
ac
c
o
r
d
in
g
to
ex
p
e
r
im
en
tal
r
esu
lts
,
esp
ec
ially
wh
en
it
co
m
es
to
d
ef
en
d
in
g
ag
ai
n
s
t
s
tatis
tical
a
n
d
d
if
f
er
en
tial
attac
k
s
.
T
h
e
id
ea
l
NPC
R
v
alu
e,
n
ea
r
-
o
p
tim
al
UACI
an
d
en
tr
o
p
y
v
alu
es,
h
is
to
g
r
a
m
an
al
y
s
is
,
an
d
co
r
r
elatio
n
of
n
eig
h
b
o
r
i
n
g
p
ix
els
v
alid
ate
th
e
ef
f
ec
tiv
e
n
ess
an
d
r
esil
ien
ce
of
th
e
s
u
g
g
ested
ap
p
r
o
ac
h
.
Alan
ez
i
et
al
.
[
2
4
]
o
f
f
e
r
an
a
p
p
r
o
ac
h
th
at
in
v
o
lv
es
u
s
in
g
t
wo
ch
ao
tic
m
ap
s
:
t
he
p
lain
tex
t
p
ictu
r
e
is
p
er
m
u
ted
u
s
in
g
a
lo
g
is
tic
-
s
in
e
m
ap
,
an
d
th
e
p
er
m
u
te
d
im
ag
e
is
th
en
s
u
b
s
titu
ted
u
s
in
g
a
lo
g
is
tic
-
C
h
eb
y
s
h
ev
m
ap
.
T
h
e
al
g
o
r
ith
m
cr
ea
tes
t
h
e
cy
p
h
er
im
ag
e
by
p
er
f
o
r
m
i
n
g
an
XOR
o
p
er
atio
n
on
th
e
r
ep
lace
d
p
ictu
r
e
u
s
in
g
a
ca
s
ca
d
e
of
th
e
two
m
ap
s
.
S
h
er
ali
[
7
]
s
u
g
g
ested
an
en
h
an
ce
d
tech
n
iq
u
e
f
o
r
d
ata
en
cr
y
p
tio
n
an
d
d
ec
r
y
p
tio
n
.
Sin
ce
k
ey
s
h
ar
in
g
was
a
m
ajo
r
is
s
u
e
with
th
e
s
y
m
m
etr
ic
tec
h
n
iq
u
e,
th
e
a
u
th
o
r
u
s
ed
E
C
C
to
p
r
o
d
u
ce
th
e
k
e
y
an
d
u
s
e
it
to
en
cr
y
p
t
an
d
d
ec
o
d
e
d
ata
u
s
in
g
th
e
AE
S.
T
h
e
p
r
o
p
o
s
ed
m
eth
o
d
is
more
s
ec
u
r
e
th
an
AE
S
b
ec
au
s
e
it
av
o
id
s
th
e
k
ey
-
s
h
ar
in
g
p
r
o
b
lem
th
at
b
eset
s
AE
S.
It
is
a
ls
o
s
im
p
ler
th
an
E
C
C
an
d
is
o
n
ly
u
s
ed
f
o
r
k
ey
g
en
er
atio
n
,
not
d
ata
en
cr
y
p
tio
n
or
d
ec
r
y
p
ti
o
n
.
2.
T
H
E
O
R
E
T
I
CA
L
F
RAM
E
WO
RK
2
.
1
.
Sea
rc
ha
ble
encr
y
ptio
n
SE
is
an
in
n
o
v
ativ
e
m
eth
o
d
th
at
h
elp
s
u
s
er
s
s
ea
r
ch
f
o
r
en
cr
y
p
ted
d
ata
with
o
u
t
r
ev
ea
lin
g
it
.
T
h
is
m
eth
o
d
en
s
u
r
es
th
e
co
n
f
id
e
n
t
iality
of
s
en
s
itiv
e
d
ata,
m
ak
in
g
it
an
im
p
o
r
ta
n
t
m
eth
o
d
in
m
o
d
er
n
i
n
f
o
r
m
atio
n
s
ec
u
r
ity
.
SE
c
o
m
b
in
es
t
h
e
b
e
n
ef
its
of
e
n
cr
y
p
ti
o
n
with
ef
f
ici
en
t
s
ea
r
ch
ab
ilit
y
,
with
o
u
t
th
e
n
ee
d
to
d
ec
r
y
p
t
th
e
en
tire
d
ata
f
o
r
a
q
u
e
r
y
,
th
is
tech
n
iq
u
e
en
a
b
les
u
s
er
s
to
p
er
f
o
r
m
d
ir
ec
t
s
ea
r
ch
es
on
en
c
r
y
p
ted
in
f
o
r
m
atio
n
u
s
in
g
alg
o
r
ith
m
s
d
esig
n
e
d
ex
c
lu
s
iv
ely
f
o
r
th
is
p
u
r
p
o
s
e,
th
is
en
s
u
r
es
th
at
n
eith
er
th
e
o
wn
e
r
of
th
e
in
f
o
r
m
atio
n
nor
u
n
a
u
th
o
r
ize
d
p
er
s
o
n
s
ca
n
g
u
ess
th
e
u
n
d
er
ly
in
g
co
n
t
en
t
or
q
u
er
ies,
Fig
u
r
e
1
illu
s
tr
ates
th
e
g
en
er
al
s
tr
u
ctu
r
e
of
a
SE
s
y
s
tem
,
it
co
n
s
is
ts
of
th
r
ee
m
ain
en
titi
es:
th
e
d
ata
o
wn
e
r
,
th
e
d
ata
u
s
er
,
a
n
d
th
e
clo
u
d
s
er
v
e
r
.
Data
o
wn
er
:
t
h
e
p
e
r
s
o
n
w
h
o
en
cr
y
p
ts
a
n
d
i
n
d
ex
es
t
h
e
d
ata
b
ef
o
r
e
s
en
d
in
g
it
to
th
e
cl
o
u
d
s
er
v
er
.
Data
u
s
er
:
th
e
p
er
s
o
n
wh
o
cr
ea
tes
t
h
e
tr
ap
d
o
o
r
to
allo
w
t
h
e
s
er
v
e
r
to
s
ea
r
ch
th
r
o
u
g
h
th
e
en
cr
y
p
ted
d
ata.
C
lo
u
d
s
er
v
er
:
th
e
s
er
v
er
s
to
r
es
th
e
en
c
r
y
p
ted
d
ata
an
d
p
er
f
o
r
m
s
s
ea
r
ch
es
on
th
e
clo
u
d
u
s
in
g
t
h
e
tr
ap
d
o
o
r
[
2
5
]
,
[
2
6
]
.
SE
tech
n
iq
u
es
can
be
b
r
o
ad
l
y
d
iv
id
ed
in
t
o
two
ca
teg
o
r
ie
s
:
i)
Sy
m
m
etr
ic
s
ea
r
ch
ab
le
en
cr
y
p
tio
n
(
SS
E
)
:
t
h
is
m
eth
o
d
is
ty
p
icall
y
u
s
ed
in
s
ce
n
ar
io
s
wh
er
e
th
e
d
ata
o
wn
er
an
d
th
e
s
ea
r
ch
er
ar
e
th
e
s
am
e
or
s
h
ar
e
a
h
ig
h
lev
el
of
tr
u
s
t.
It
r
eli
es
on
s
y
m
m
etr
ic
k
ey
s
,
o
f
f
er
in
g
ef
f
icien
cy
a
n
d
s
im
p
licity
f
o
r
s
m
aller
-
s
ca
le
ap
p
licatio
n
s
[
5
]
,
[
2
7
]
;
an
d
ii)
Pu
b
lic
-
k
ey
en
cr
y
p
tio
n
with
k
ey
wo
r
d
s
ea
r
ch
(
PEKS)
:
PEKS
is
d
esig
n
ed
f
o
r
s
ce
n
ar
io
s
wh
er
e
th
e
d
ata
o
wn
er
an
d
s
ea
r
ch
er
ar
e
d
is
tin
ct
en
titi
es.
It
u
s
es
p
u
b
lic
-
k
ey
in
f
r
astru
ctu
r
e,
allo
win
g
s
ec
u
r
e
s
ea
r
ch
es
in
en
v
ir
o
n
m
e
n
ts
wh
er
e
tr
u
s
t
is
lim
ited
[
2
8
]
,
[
2
9
]
.
2
.
2
.
O
v
er
v
iew
of
a
dv
a
nced
e
ncry
ptio
n sta
nd
a
rd
a
lg
o
rit
hm
T
h
e
AE
S
alg
o
r
ith
m
im
p
lem
e
n
ts
en
cr
y
p
tio
n
an
d
d
ec
r
y
p
tio
n
p
r
o
ce
s
s
es
on
a
128
-
b
it
k
e
y
l
en
g
th
an
d
u
s
es
th
e
s
am
e
k
ey
f
o
r
b
o
th
p
r
o
ce
s
s
es.
AE
S
p
er
f
o
r
m
s
10,
1
2
,
an
d
14
r
o
u
n
d
s
f
o
r
128,
192
,
an
d
2
5
6
-
b
it
k
ey
s
,
r
esp
ec
tiv
ely
.
128
-
b
it
b
lo
ck
d
ata
ar
e
ar
r
an
g
ed
in
th
e
ar
r
a
y
with
s
ize
4
×
4,
also
ca
lled
a
s
tate.
T
h
e
AE
S
tr
an
s
f
o
r
m
atio
n
s
ar
e
ex
p
lain
e
d
as
f
o
llo
ws
[
3
0
]
–
[
3
2
]
:
i)
Su
b
B
y
tes
tr
an
s
f
o
r
m
atio
n
:
an
S
-
B
o
x
is
u
s
ed
to
r
e
p
lace
ea
ch
d
ata
b
lo
c
k
b
y
te
with
a
n
o
th
er
b
lo
c
k
ac
co
r
d
in
g
t
o
a
l
o
o
k
u
p
tab
le
;
ii)
Sh
if
t
tr
an
s
f
o
r
m
atio
n
o
f
r
o
ws
:
a
tr
an
s
p
o
s
itio
n
s
tep
wh
er
e
ea
c
h
r
o
w
o
f
th
e
s
tate
m
atr
ix
is
g
i
v
en
a
c
y
clic
s
h
if
t
by
a
ce
r
tai
n
n
u
m
b
er
o
f
s
tep
s
;
iii)
Mix
tr
an
s
f
o
r
m
atio
n
o
f
co
l
u
m
n
s
:
a
m
ix
in
g
m
u
ltip
licatio
n
p
r
o
ce
s
s
th
at
is
p
er
f
o
r
m
ed
o
n
th
e
c
o
lu
m
n
s
o
f
th
e
s
tate
m
atr
ix
,
co
m
b
in
i
n
g
th
e
f
o
u
r
b
y
tes
in
ea
ch
co
l
u
m
n
;
iv
)
Ad
d
r
o
u
n
d
k
ey
t
r
an
s
f
o
r
m
atio
n
:
XOR
o
p
er
atio
n
is
p
er
f
o
r
m
ed
b
etwe
en
th
e
n
ew
s
t
ate
m
atr
ix
an
d
th
e
r
o
u
n
d
k
e
y
o
n
e
;
an
d
v
)
Ad
d
r
o
u
n
d
k
e
y
tr
an
s
f
o
r
m
atio
n
:
ea
ch
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8
8
1
4
I
n
t J Ad
v
Ap
p
l Sci
,
Vo
l.
14
,
No
.
3
,
Sep
tem
b
er
20
25
:
975
-
9
8
4
978
b
y
te
o
f
th
e
s
tate
m
atr
ix
is
X
OR
ed
with
th
e
r
o
u
n
d
k
ey
.
Usi
n
g
a
k
ey
s
ch
ed
u
le,
ea
ch
r
o
u
n
d
k
ey
is
o
b
tain
ed
f
r
o
m
th
e
cip
h
er
k
ey
.
T
h
e
f
in
al
r
o
u
n
d
co
n
s
is
ts
o
f
Su
b
B
y
tes,
Sh
if
tR
o
ws,
an
d
Ad
d
R
o
u
n
d
Key
.
2
.
3
.
Cha
o
t
ic
m
a
ps
T
h
e
lo
g
is
tic
m
a
p
was
f
ir
s
t
p
r
o
p
o
s
ed
b
y
b
io
lo
g
is
t
R
o
b
er
t
Ma
y
in
1
9
7
6
,
n
am
ely
,
a
s
im
p
le
n
o
n
lin
ea
r
p
o
ly
n
o
m
ial
m
ap
p
in
g
eq
u
atio
n
with
d
eg
r
ee
2
.
I
t
is
lar
g
ely
a
d
is
cr
ete
-
tim
e
d
em
o
g
r
a
p
h
ic
m
o
d
el
s
im
ilar
to
th
e
lo
g
is
tic
eq
u
atio
n
f
ir
s
t
d
is
co
v
er
ed
b
y
Pier
r
e
Fra
n
co
is
Ver
h
u
ls
t
[
3
3
]
–
[
3
5
]
.
T
h
e
f
o
llo
win
g
p
r
e
s
en
ts
v
ar
io
u
s
ty
p
es
o
f
ch
ao
tic
m
a
p
s
.
2
.
3
.
1
.
1D
lo
g
is
t
ic
m
a
p
T
h
e
lo
g
is
tic
m
ap
is
an
ef
f
ec
tiv
e
an
d
ea
s
y
1D
ch
a
o
tic
m
ap
th
a
t
h
as
co
m
p
licated
c
h
ao
tic
b
eh
av
io
r
,
a
n
d
it
can
be
d
ef
i
n
ed
by
(
1
)
.
+
1
=
(
1
−
)
(
1
)
W
h
er
e
r
ep
r
esen
ts
th
e
cu
r
r
en
t
p
o
p
u
latio
n
’
s
r
atio
to
th
e
g
r
ea
t
est
ex
is
tin
g
p
o
p
u
latio
n
,
with
a
r
an
g
e
[
0
,
1
]
,
an
d
r
s
tan
d
s
f
o
r
a
co
n
tr
o
l
p
ar
am
e
ter
th
at
h
as
a
r
an
g
e
of
[
0,
4
]
.
On
ly
wh
en
f
alls
b
etwe
en
[
3
.
5
7
,
4
.
0
]
can
th
e
lo
g
is
tic
m
ap
ex
h
ib
it
c
h
ao
tic
b
eh
av
io
r
s
;
if
is
g
r
ea
ter
th
an
t
h
e
r
an
g
e,
th
e
lo
g
is
tic
m
ap
ca
n
n
o
t
ex
h
ib
it
ch
a
o
tic
b
eh
av
io
r
s
[
3
3
]
.
T
h
e
s
tate
an
d
th
e
ar
ea
of
a
m
ap
'
s
ch
ao
tic
b
eh
av
io
r
can
be
o
b
jectiv
e
ly
r
ef
lecte
d
in
th
e
b
if
u
r
ca
tio
n
d
iag
r
am
.
Fig
u
r
e
2
s
h
o
ws
th
e
lo
g
is
tic
m
ap
’
s
b
if
u
r
ca
tio
n
d
iag
r
am
.
Fig
u
r
e
1
.
Gen
e
r
al
s
tr
u
ctu
r
e
o
f
a
s
ea
r
ch
ab
le
en
cr
y
p
tio
n
s
ch
em
e
Fig
u
r
e
2
.
B
if
u
r
ca
tio
n
d
iag
r
am
T
h
e
1
D
lo
g
is
tic
m
ap
in
v
o
l
v
es
a
s
in
g
le
g
r
ea
test
L
y
ap
u
n
o
v
ex
p
o
n
en
t
(
L
E
)
,
w
h
ich
estab
lis
h
es
wh
eth
er
o
r
n
o
t
a
m
a
p
is
ch
a
o
tic.
T
h
e
m
ap
ca
n
b
e
r
eg
ar
d
ed
as
c
h
ao
tic
if
th
e
L
E
v
alu
e
is
g
r
ea
ter
th
an
ze
r
o
an
d
v
ice
v
er
s
a.
As th
e
L
E
v
alu
e
i
n
cr
ea
s
es,
th
e
m
ap
'
s
co
m
p
lex
ity
r
is
es a
s
well.
I
n
(
2
)
s
h
o
ws th
e
L
E
f
o
r
th
e
1
D
m
ap
s
.
=
→
∞
1
∑
|
’
(
)
|
−
1
=
0
(
2
)
W
h
er
e
(
)
d
en
o
tes
a
1
D
ch
ao
tic
m
ap
an
d
′(
)
d
en
o
tes
th
e
d
er
iv
ativ
e
f
u
n
ctio
n
o
f
th
e
f
u
n
c
tio
n
(
)
.
T
h
e
n
u
m
b
er
o
f
iter
atio
n
s
o
f
th
e
c
h
ao
tic
m
ap
is
n
.
2
.
3
.
2
.
H
éno
n
ma
p
Hén
o
n
[
3
6
]
in
tr
o
d
u
ce
d
th
e
H
én
o
n
m
ap
,
a
2D
iter
ated
m
ap
with
ch
ao
tic
s
o
lu
tio
n
s
,
as
a
s
im
p
lifie
d
v
er
s
io
n
of
th
e
Po
in
ca
r
é
m
ap
f
o
r
th
e
L
o
r
en
z
m
o
d
el
[
3
6
]
–
[
3
9
]
.
T
h
e
s
ea
r
ch
er
s
u
s
e
th
e
2D
H
én
o
n
ch
ao
tic
s
y
s
tem
as
th
e
s
ec
r
et
k
ey
g
en
er
atio
n
s
o
u
r
ce
b
ec
au
s
e
th
e
1D
ch
a
o
tic
s
y
s
tem
is
s
im
p
le
to
b
r
e
ak
,
an
d
t
h
e
h
ig
h
-
d
im
en
s
io
n
al
ch
ao
tic
s
y
s
tem
is
ex
tr
em
ely
co
m
p
licated
an
d
in
ef
f
ec
tiv
e.
I
ts
d
ef
in
itio
n
is
s
h
o
wn
in
(
3
)
an
d
(
4
)
.
+
1
=
1
+
−
2
(
3
)
+
1
=
(
4
)
W
h
er
e
=0
,
1
,
2
,
…
,
an
d
an
d
ar
e
b
if
u
r
ca
tio
n
p
ar
am
eter
s
f
o
r
th
e
class
ical
Hén
o
n
m
ap
,
h
av
e
v
alu
es
of
=1
.
4
a
n
d
=0
.
3
.
T
h
e
Hén
o
n
m
ap
is
th
e
m
o
s
t
g
en
e
r
al
2D
q
u
ad
r
atic
m
ap
with
t
h
e
ch
a
r
a
cter
is
tic
th
at
th
e
co
n
tr
ac
tio
n
is
in
d
ep
e
n
d
en
t
of
an
d
.
T
h
e
p
ar
am
eter
r
ep
r
esen
t
s
th
e
r
ate
of
a
r
ea
co
n
tr
ac
tio
n
.
Fo
r
th
e
Hé
n
o
n
m
ap
,
th
er
e
a
r
e
b
o
u
n
d
ed
s
o
lu
ti
o
n
s
o
v
er
a
r
an
g
e
of
an
d
;
s
o
m
e
lead
to
ch
a
o
tic
s
o
lu
tio
n
s
[
4
0
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ad
v
Ap
p
l Sci
I
SS
N:
2252
-
8
8
1
4
S
ea
r
ch
a
b
le
e
n
cryp
tio
n
b
a
s
ed
o
n
a
c
h
a
o
tic
s
ystem
a
n
d
A
E
S
a
lg
o
r
ith
m
(
F
a
ir
o
u
z
S
h
era
li
)
979
3.
M
E
T
H
O
D
T
h
is
s
ec
tio
n
p
r
esen
ts
th
e
p
r
o
ce
d
u
r
e
of
th
e
p
r
o
p
o
s
ed
d
ata
en
cr
y
p
tio
n
alg
o
r
ith
m
to
m
o
d
if
y
th
e
AE
S
alg
o
r
ith
m
u
s
in
g
a
ch
a
o
tic
m
ap
.
T
h
e
c
h
ao
s
m
eth
o
d
is
u
til
ized
in
th
e
d
ata
en
cr
y
p
tio
n
a
lg
o
r
ith
m
u
s
in
g
th
e
Hén
o
n
m
ap
to
g
e
n
er
ate
t
h
e
AE
S
k
ey
.
T
h
e
i
n
itial
p
ar
am
et
er
s
of
t
h
e
Hén
o
n
m
ap
,
a
an
d
b
,
ar
e
k
ep
t
s
ec
r
et
,
wh
ich
ad
d
s
an
o
t
h
er
lay
er
of
p
r
o
tectio
n
.
T
h
is
m
ak
es
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
h
ig
h
ly
s
ec
u
r
e
f
o
r
en
cr
y
p
tin
g
p
r
iv
ate
d
ata,
p
ar
ticu
lar
ly
in
cl
o
u
d
en
v
ir
o
n
m
en
ts
.
T
h
e
p
r
o
p
o
s
ed
s
y
s
tem
co
m
p
r
is
es
th
r
ee
p
h
a
s
es
,
i)
Sen
d
er
p
h
ase
-
Gen
er
ate
th
e
AE
S
k
e
y
u
s
in
g
a
2D
Hén
o
n
m
a
p
:
ch
o
o
s
e
th
e
i
n
itial
v
alu
es
f
o
r
th
e
Hén
o
n
m
ap
p
ar
am
ete
r
s
:
a
an
d
b
;
ch
o
o
s
e
th
e
r
an
d
o
m
ly
in
itial
ized
v
alu
es
f
o
r
th
e
X
0
an
d
Y
0
(
th
e
r
a
n
g
e
b
etwe
en
-
1
to
1)
;
a
p
p
ly
th
e
Hén
o
n
m
ap
(
3
)
an
d
(
4
)
to
co
m
p
u
te
th
e
c
h
ao
tic
s
er
ies
;
iter
ate
th
e
eq
u
atio
n
s
f
o
r
50
tim
es
;
co
n
ca
ten
ate
th
e
v
alu
es
of
x
an
d
y
in
to
a
s
tr
in
g
;
an
d
ap
p
ly
a
h
ash
f
u
n
ctio
n
lik
e
SHA
-
256
to
g
en
er
ate
th
e
AE
S
k
ey
.
-
C
r
ea
tin
g
a
s
ea
r
ch
ab
le
in
d
ex
t
h
at
in
clu
d
es
th
e
k
ey
wo
r
d
s
in
a
way
th
at
s
u
ch
k
ey
wo
r
d
s
c
an
be
q
u
er
ied
later
.
-
T
h
e
s
en
d
er
en
cr
y
p
ts
th
e
s
ea
r
c
h
ab
le
in
d
e
x
u
s
in
g
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
C
HO
-
AE
S
,
s
h
o
wn
in
Fig
u
r
e
3,
an
d
a
cr
y
p
to
g
r
ap
h
ic
h
ash
f
u
n
c
tio
n
.
-
T
h
e
s
en
d
er
e
n
cr
y
p
ts
th
e
f
iles
u
s
in
g
th
e
s
am
e
alg
o
r
ith
m
.
-
Up
lo
ad
s
th
e
en
cr
y
p
ted
s
ea
r
c
h
a
b
le
in
d
ex
a
n
d
f
iles
to
th
e
clo
u
d
s
er
v
er
.
ii)
R
ec
eiv
er
p
h
ase
-
T
h
e
r
ec
eiv
er
e
n
cr
y
p
ts
th
e
tr
ap
d
o
o
r
-
b
ased
s
ea
r
ch
u
s
in
g
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
C
HO
-
AE
S
.
-
Sen
d
th
e
g
e
n
er
ated
tr
a
p
d
o
o
r
to
th
e
clo
u
d
s
er
v
er
.
iii)
C
lo
u
d
p
h
ase
-
T
h
e
s
er
v
er
s
ea
r
ch
es
on
u
p
lo
ad
ed
en
cr
y
p
ted
s
ea
r
ch
a
b
le
in
d
ex
to
co
m
p
a
r
e
th
e
k
e
y
wo
r
d
an
d
tr
ap
d
o
o
r
.
-
I
f
th
er
e
is
a
m
atch
b
etwe
en
th
e
k
ey
wo
r
d
a
n
d
tr
ap
d
o
o
r
,
th
e
s
er
v
er
r
etu
r
n
s
th
e
r
elev
an
t
en
c
r
y
p
ted
f
ile
to
th
e
r
ec
eiv
er
.
-
T
he
r
ec
eiv
er
d
ec
r
y
p
ts
th
e
r
ele
v
an
t
f
iles
u
s
in
g
th
e
in
v
er
s
e
s
tep
s
of
th
e
en
cr
y
p
tio
n
alg
o
r
ith
m
.
T
h
e
p
r
o
p
o
s
ed
d
ata
en
cr
y
p
tio
n
alg
o
r
ith
m
C
HO
-
AE
S
is
s
h
o
wn
in
Fig
u
r
e
3;
th
is
alg
o
r
ith
m
in
clu
d
es:
i
)
g
en
er
atin
g
th
e
AE
S
k
ey
u
s
in
g
a
2D
Hén
o
n
ch
ao
tic
e
q
u
ati
o
n
,
ii
)
e
n
cr
y
p
tin
g
th
e
f
iles
u
s
in
g
m
o
d
if
ied
AE
S,
iii
)
cr
ea
tin
g
a
s
ea
r
ch
ab
le
i
n
d
ex
,
an
d
iv
)
en
cr
y
p
tin
g
an
d
h
ash
in
g
th
e
s
ea
r
ch
a
b
le
in
d
e
x
.
Fig
u
r
e
3.
Pro
p
o
s
ed
d
ata
en
cr
y
p
tio
n
alg
o
r
ith
m
C
HO
-
AE
S
4.
RE
SU
L
T
S
AND
D
I
SCU
SS
I
O
N
T
h
is
s
ec
tio
n
p
er
f
o
r
m
s
an
e
v
a
lu
atio
n
s
tu
d
y
to
an
aly
z
e
th
e
p
er
f
o
r
m
an
ce
of
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
.
T
ex
t
an
d
im
a
g
e
f
iles
of
d
if
f
e
r
en
t
ty
p
es
an
d
s
izes
ar
e
u
s
ed
f
o
r
th
e
test
.
We
u
s
e
th
e
s
tan
d
ar
d
M
o
n
a
L
iza,
B
ab
o
o
n
,
an
d
B
ar
b
a
r
a
im
ag
es
f
o
r
co
lo
r
im
ag
es.
T
h
e
s
u
g
g
ested
en
cr
y
p
tio
n
alg
o
r
ith
m
'
s
s
tr
en
g
th
is
ev
alu
ated
by
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8
8
1
4
I
n
t J Ad
v
Ap
p
l Sci
,
Vo
l.
14
,
No
.
3
,
Sep
tem
b
er
20
25
:
975
-
9
8
4
980
co
n
d
u
ctin
g
p
er
f
o
r
m
an
ce
test
s
on
m
u
ltip
le
p
ar
am
eter
s
.
V
is
ib
ilit
y
test
,
in
f
o
r
m
atio
n
en
tr
o
p
y
an
aly
s
is
,
PS
NR
,
NPC
R
,
UACI,
an
d
co
r
r
elatio
n
co
ef
f
icien
t
.
4
.
1
.
I
nfo
r
m
a
t
io
n
v
is
ibi
lity
t
est
Fig
u
r
e
4
s
h
o
ws
th
e
v
is
ib
ilit
y
test
u
s
in
g
C
HO
-
AE
S.
T
h
e
p
r
o
p
o
s
ed
en
cr
y
p
tio
n
tech
n
iq
u
e
is
ap
p
lied
in
th
e
s
tan
d
ar
d
Mo
n
a
L
iza
im
ag
e,
B
ab
o
o
n
im
ag
e,
a
n
d
B
ar
b
a
r
a
im
ag
e
,
as
illu
s
tr
ated
in
Fig
u
r
e
4
(
a
)
,
r
esp
ec
tiv
ely
.
T
h
e
r
esu
lts
of
th
e
e
n
cr
y
p
ted
i
m
ag
es
,
Fig
u
r
e
4(
b)
,
d
is
p
lay
th
e
co
m
p
lete
co
n
ce
alm
en
t
of
in
f
o
r
m
atio
n
.
(
a)
(
b
)
Fig
u
r
e
4
.
Vis
ib
ilit
y
test
u
s
in
g
C
HO
-
AE
S o
f
(
a)
p
lain
im
ag
es
an
d
(
b
)
en
c
r
y
p
ted
im
ag
es o
f
t
h
e
p
lain
im
ag
es
4
.
2
.
I
nfo
r
m
a
t
io
n e
ntr
o
py
a
n
a
ly
s
is
E
n
tr
o
p
y
an
aly
s
is
is
a
cr
u
cial
p
ar
am
eter
in
im
ag
e
en
cr
y
p
tio
n
th
at
estab
lis
h
es
th
e
in
f
o
r
m
atio
n
'
s
u
n
p
r
e
d
ictab
ilit
y
.
E
x
ce
llen
t
s
ta
tis
tical
r
an
d
o
m
n
ess
an
d
i
n
f
o
r
m
atio
n
en
tr
o
p
y
ch
ar
ac
ter
ize
a
s
ec
u
r
e
en
cr
y
p
ted
im
ag
e.
I
t
is
o
b
s
er
v
ed
th
at
eig
h
t
b
its
p
er
p
ix
el
is
th
e
m
ax
im
u
m
en
tr
o
p
y
v
alu
e
f
o
r
a
g
r
ay
s
ca
le
im
ag
e.
Fo
r
m
an
y
p
r
ev
io
u
s
s
tu
d
i
es,
th
e
en
tr
o
p
y
av
er
ag
e
v
alu
e
h
as
r
an
g
e
d
f
r
o
m
7
.
9
0
t
o
7
.
9
9
.
T
ab
le
1
i
llu
s
tr
ates
th
at
th
e
in
f
o
r
m
ati
o
n
en
tr
o
p
y
o
f
th
e
e
n
c
r
y
p
tio
n
al
g
o
r
ith
m
s
is
clo
s
e
to
8
.
T
ab
le
1
.
E
n
tr
o
p
y
v
alu
es f
o
r
A
E
S a
n
d
p
r
o
p
o
s
ed
AE
S
-
C
HO
f
o
r
d
if
f
e
r
en
t im
ag
es
I
mag
e
En
t
r
o
p
y
A
ES e
n
c
r
y
p
t
i
o
n
A
ES
-
C
H
O
M
o
n
a
L
i
z
a
7
.
5
6
3
5
7
.
5
4
2
3
B
a
b
o
o
n
7
.
4
8
8
3
7
.
4
8
5
1
B
a
r
b
a
r
a
7
.
6
3
7
3
7
.
6
3
6
9
4
.
3
.
P
e
a
k
s
ig
na
l
-
to
-
no
is
e
ra
t
io
a
na
ly
s
is
T
h
e
en
c
r
y
p
tio
n
tech
n
iq
u
es
ca
n
be
ass
ess
ed
u
s
in
g
th
e
PS
NR
.
T
h
e
en
c
r
y
p
ted
im
ag
e
is
tr
ea
te
d
as
n
o
is
e,
wh
er
ea
s
th
e
o
r
ig
in
al
p
lain
im
ag
e
is
tr
ea
ted
as
a
s
ig
n
al
in
th
e
co
m
p
u
tatio
n
of
t
h
e
PS
NR
.
L
o
wer
PS
NR
v
alu
es
ar
e
an
ticip
ated
f
o
r
en
cr
y
p
ted
i
m
ag
es.
L
et
(
,
)
be
th
e
p
i
x
el
v
alu
e
of
th
e
p
lain
im
a
g
e
an
d
(
,
)
be
th
e
p
ix
el
v
alu
e
of
th
e
en
cr
y
p
ted
im
ag
e
at
th
e
lo
ca
tio
n
(
,
)
.
T
h
e
MSE
an
d
PS
NR
b
etwe
en
th
e
s
e
tw
o
im
ag
es
ar
e
co
m
p
u
ted
by
(
5
)
.
=
20
∗
10
(
255
√
)
(
5
)
W
h
er
e
MSE
is
th
e
m
ea
n
s
q
u
ar
e
er
r
o
r
a
n
d
is
d
ef
i
n
ed
as
(
6
)
.
=
1
∑
∑
(
|
(
,
)
−
(
,
)
|
)
2
=
1
=
1
(
6
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ad
v
Ap
p
l Sci
I
SS
N:
2252
-
8
8
1
4
S
ea
r
ch
a
b
le
e
n
cryp
tio
n
b
a
s
ed
o
n
a
c
h
a
o
tic
s
ystem
a
n
d
A
E
S
a
lg
o
r
ith
m
(
F
a
ir
o
u
z
S
h
era
li
)
981
T
ab
le
2
s
h
o
ws
lo
w
PS
N
R
v
alu
es,
in
d
icatin
g
th
at
attac
k
er
s
will
h
av
e
d
if
f
icu
lties
ex
tr
ac
tin
g
th
e
p
lain
im
ag
e
f
r
o
m
th
e
cip
h
er
im
ag
e
.
T
ab
le
2
.
P
ea
k
s
ig
n
al
-
to
-
n
o
is
e
r
atio
v
alu
es
f
o
r
AE
S
-
C
HO
f
o
r
d
if
f
er
en
t im
a
g
es
I
mag
e
P
S
N
R
f
o
r
A
ES
P
S
N
R
f
o
r
A
ES
-
C
H
O
M
o
n
a
L
i
z
a
9
.
9
7
6
3
0
1
9
.
3
0
2
8
7
8
B
a
b
o
o
n
8
.
7
6
4
9
3
3
8
.
4
5
2
9
3
2
B
a
r
b
a
r
a
9
.
9
6
4
2
8
5
9
.
8
5
3
7
6
2
4
.
4
.
Dif
f
er
ent
ia
l
a
na
ly
s
is
Sy
s
tem
s
en
s
it
iv
ity
is
a
cr
u
cia
l
s
ec
u
r
ity
ass
e
s
s
m
en
t
asp
ec
t
f
o
r
im
ag
e
en
cr
y
p
tio
n
alg
o
r
ith
m
s
ag
ain
s
t
d
if
f
er
en
tial
attac
k
s
.
NPC
R
,
wh
ich
s
tan
d
s
f
o
r
th
e
n
u
m
b
er
of
ch
an
g
in
g
p
i
x
el
r
ate
,
an
d
UACI
,
f
o
r
u
n
if
ie
d
av
er
ag
ed
ch
an
g
ed
in
ten
s
ity
,
ar
e
th
e
m
o
s
t
o
f
ten
u
s
ed
m
etr
ics
f
o
r
th
e
ab
o
v
e
p
u
r
p
o
s
e.
A
h
ig
h
NPC
R
v
alu
e
m
ea
n
s
th
at
th
e
p
o
s
itio
n
s
of
p
ix
els
h
av
e
b
ee
n
alter
ed
ar
b
itra
r
il
y
,
an
d
UACI
v
alu
es
in
d
icate
th
at
alm
o
s
t
all
p
ix
el
in
ten
s
ity
v
alu
es
of
th
e
en
cr
y
p
ted
im
ag
e
h
av
e
d
if
f
er
e
d
f
r
o
m
th
eir
v
alu
e
in
th
e
p
lain
im
ag
e.
T
h
e
ir
d
ef
i
n
itio
n
s
ar
e
as
(
7
)
a
n
d
(
8
)
.
=
∑
(
,
)
,
×
×
100%
(
7
)
=
1
×
[
∑
|
1
(
,
)
−
2
(
,
)
|
255
,
]
×
100%
(
8
)
W
h
er
e
an
d
r
ep
r
esen
t
th
e
im
ag
e'
s
wid
th
an
d
h
eig
h
t,
r
esp
ec
tiv
ely
.
1
(
,
)
2
(
,
)
ar
e
t
h
e
co
r
r
esp
o
n
d
in
g
p
ix
els
of
two
im
ag
es.
If
1
(
,
)
=
2
(
,
)
,
th
en
(
,
)
=
0
,
o
th
e
r
wis
e
(
,
)
=
1
.
T
h
e
o
p
tim
al
v
alu
es
of
UACI
an
d
NPC
R
ar
e
33%
an
d
9
9
%
r
esp
ec
tiv
ely
.
T
ab
le
3
illu
s
tr
ates
th
e
test
p
e
r
ce
n
tag
e
of
NPC
R
an
d
UACI
f
o
r
AE
S
an
d
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
,
AE
S
-
C
HO.
T
h
e
ca
lcu
lated
NPC
R
an
d
UA
C
I
v
alu
es
f
o
r
AE
S
-
C
HO
ar
e
g
r
ea
ter
th
an
97%
an
d
1
8
%,
r
esp
ec
tiv
ely
.
As
a
r
esu
lt,
th
e
co
m
p
u
ted
v
al
u
es
f
o
r
AE
S
-
C
HO
ex
h
ib
it
h
ig
h
er
m
ea
s
u
r
em
en
ts
th
an
th
e
AE
S.
T
h
is
in
d
icate
s
a
clea
r
d
is
tin
ctio
n
b
etwe
en
th
e
two
al
g
o
r
ith
m
s
,
s
u
g
g
esti
n
g
th
e
ef
f
ec
tiv
e
n
ess
of
th
e
p
r
o
p
o
s
ed
en
cr
y
p
tio
n
alg
o
r
ith
m
ag
ain
s
t
d
if
f
er
en
tial
attac
k
s
.
T
ab
le
3
.
NPC
R
an
d
UACI
v
alu
es
f
o
r
AE
S
an
d
AE
S
-
C
HO
f
o
r
d
if
f
er
e
n
t im
ag
es
I
mag
e
N
P
C
R
f
o
r
A
ES
(
%)
N
P
C
R
f
o
r
A
ES
-
C
H
O
(
%)
U
A
C
I
f
o
r
A
ES
U
C
A
I
f
o
r
A
ES
-
C
H
O
M
o
n
a
L
i
z
a
9
6
.
4
0
9
8
.
6
5
2
1
.
6
5
9
9
2
3
.
4
6
2
6
B
a
b
o
o
n
9
6
.
6
3
9
7
.
4
5
1
7
.
3
1
9
6
1
8
.
7
6
5
1
B
a
r
b
a
r
a
9
7
.
3
5
9
8
.
5
0
2
0
.
6
8
3
4
2
2
.
8
4
9
2
4
.
5
.
Co
rr
el
a
t
io
n
a
na
ly
s
is
E
ac
h
p
ix
el
in
a
p
lain
im
ag
e
co
n
tain
in
g
v
is
u
al
co
n
ten
t
is
ty
p
ically
h
ig
h
ly
ass
o
ciate
d
with
its
n
eig
h
b
o
r
in
g
p
ix
els
in
th
e
h
o
r
izo
n
tal,
v
er
tical,
a
n
d
d
iag
o
n
a
l
d
im
en
s
io
n
s
.
Su
ch
co
r
r
elatio
n
s
in
n
eig
h
b
o
r
i
n
g
p
ix
els
s
h
o
u
ld
not
o
cc
u
r
in
en
c
r
y
p
ted
im
ag
es
g
e
n
er
ated
by
a
co
m
p
eten
t
en
cr
y
p
tio
n
tec
h
n
iq
u
e.
T
h
e
co
r
r
elatio
n
co
ef
f
icien
t
b
etwe
en
n
eig
h
b
o
r
i
n
g
p
ix
els
is
c
o
m
p
u
ted
u
s
in
g
(9
)
-
(
1
2
)
.
T
h
e
co
r
r
elatio
n
c
o
ef
f
icien
t
b
etwe
en
n
eig
h
b
o
r
in
g
p
ix
els
an
d
can
be
d
ef
in
ed
u
s
in
g
th
e
(
9
)
-
(
1
2
)
.
(
)
=
1
∑
=
1
(
9
)
(
)
=
1
∑
(
−
(
)
)
2
=
1
(
1
0
)
(
,
)
=
1
∑
(
−
(
)
)
(
−
(
)
)
=
1
(
1
1
)
=
(
,
)
√
(
)
√
(
)
(
1
2
)
W
h
er
e
an
d
ar
e
n
eig
h
b
o
r
in
g
p
ix
els,
(
)
an
d
(
)
ar
e
th
e
m
ea
n
v
alu
es
of
an
d
,
(
)
is
th
e
s
tan
d
ar
d
d
ev
iatio
n
f
o
r
t
h
e
m
ea
n
,
(
,
)
is
th
e
co
v
ar
ian
ce
b
etwe
en
n
eig
h
b
o
r
in
g
p
ix
els
an
d
is
th
e
co
r
r
el
atio
n
co
ef
f
icien
t.
T
ab
les
4
-
6
p
r
esen
t
th
e
ca
lcu
lated
co
r
r
elatio
n
co
ef
f
icien
ts
b
etwe
en
th
e
o
r
ig
in
al
an
d
en
cr
y
p
ted
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8
8
1
4
I
n
t J Ad
v
Ap
p
l Sci
,
Vo
l.
14
,
No
.
3
,
Sep
tem
b
er
20
25
:
975
-
9
8
4
982
im
ag
es
f
o
r
d
if
f
e
r
en
t
im
a
g
es.
As
o
b
s
er
v
ed
,
th
er
e
is
a
s
tr
o
n
g
co
r
r
elatio
n
b
etwe
en
e
v
er
y
two
n
eig
h
b
o
r
in
g
p
ix
els
in
th
e
o
r
ig
in
al
im
ag
e
.
In
co
n
tr
ast,
th
e
co
r
r
elatio
n
co
ef
f
icie
n
ts
f
o
r
en
cr
y
p
ted
im
ag
es
ar
e
ex
t
r
em
ely
n
ea
r
to
ze
r
o
.
T
h
er
ef
o
r
e,
th
e
s
u
g
g
ested
m
eth
o
d
is
r
esis
tan
t
to
s
tatis
tica
l
atta
ck
s
.
T
ab
le
4
.
C
o
r
r
elatio
n
co
ef
f
icien
ts
o
f
n
eig
h
b
o
r
i
n
g
p
ix
els:
Mo
n
a
L
iza
D
i
r
e
c
t
i
o
n
o
f
a
d
j
a
c
e
n
t
p
i
x
e
l
s
P
l
a
i
n
i
ma
g
e
En
c
r
y
p
t
e
d
i
ma
g
e
V
e
r
t
i
c
a
l
0
.
9
3
7
1
2
7
0
.
0
0
3
7
4
5
H
o
r
i
z
o
n
t
a
l
0
.
9
6
4
8
3
2
0
.
0
5
3
9
8
1
D
i
a
g
o
n
a
l
0
.
9
1
8
7
5
1
0
.
0
0
6
3
0
1
T
ab
le
5
.
C
o
r
r
elatio
n
co
ef
f
icien
ts
o
f
n
eig
h
b
o
r
i
n
g
p
ix
els:
B
ab
o
o
n
D
i
r
e
c
t
i
o
n
o
f
a
d
j
a
c
e
n
t
p
i
x
e
l
s
P
l
a
i
n
i
ma
g
e
En
c
r
y
p
t
e
d
i
ma
g
e
V
e
r
t
i
c
a
l
0
.
9
5
3
2
0
1
0
.
0
0
0
7
4
2
H
o
r
i
z
o
n
t
a
l
0
.
9
6
3
0
1
3
0
.
0
0
4
3
2
9
D
i
a
g
o
n
a
l
0
.
9
4
4
3
2
0
0
.
0
0
7
2
7
3
T
ab
le
6.
C
o
r
r
elatio
n
co
ef
f
icien
ts
of
n
eig
h
b
o
r
i
n
g
p
i
x
els:
B
ar
b
ar
a
D
i
r
e
c
t
i
o
n
of
a
d
j
a
c
e
n
t
p
i
x
e
l
s
P
l
a
i
n
i
ma
g
e
En
c
r
y
p
t
e
d
i
ma
g
e
V
e
r
t
i
c
a
l
0
.
8
7
4
6
0
9
-
0
.
0
0
1
4
5
1
H
o
r
i
z
o
n
t
a
l
0
.
7
3
6
1
8
8
-
0
.
0
0
1
6
5
0
2
D
i
a
g
o
n
a
l
0
.
8
5
3
0
9
2
-
0
.
0
0
1
2
8
4
4
.
6
.
Co
m
pa
riso
n
wit
h
s
o
m
e
ex
is
t
ing
encr
y
ptio
n a
lg
o
rit
hm
s
In
ter
m
s
of
e
n
cr
y
p
tio
n
ex
ec
u
tio
n
tim
e,
th
e
s
im
p
le
co
m
p
ar
ati
v
e
an
aly
s
is
,
u
s
in
g
th
e
B
ab
o
o
n
im
ag
e
as
a
b
en
c
h
m
ar
k
,
r
e
v
ea
ls
th
at
t
h
e
p
r
o
p
o
s
ed
AE
S
-
C
HO
o
u
tp
e
r
f
o
r
m
s
e
x
is
tin
g
tech
n
iq
u
es,
as
d
em
o
n
s
tr
ated
in
T
ab
le
7.
T
h
e
r
esu
lts
s
h
o
w
th
at
wh
ile
s
o
m
e
r
esear
ch
es
o
f
f
er
r
o
b
u
s
t
s
ec
u
r
ity
,
it
o
f
ten
c
o
m
es
at
th
e
c
o
s
t
of
h
ig
h
er
c
o
m
p
u
tatio
n
al
co
m
p
le
x
ity
.
In
co
n
tr
ast,
th
e
p
r
o
p
o
s
ed
AE
S
-
C
HO
m
ain
tain
s
a
b
alan
ce
be
twee
n
s
ec
u
r
ity
an
d
ef
f
icien
c
y
,
m
a
k
in
g
it
m
o
r
e
ap
p
r
o
p
r
iate
f
o
r
r
ea
l
-
tim
e
a
p
p
licatio
n
s
.
T
ab
le
7.
E
n
cr
y
p
tio
n
tim
e
(
in
s
ec
o
n
d
s
)
of
th
e
B
ab
o
o
n
im
ag
e
f
o
r
th
e
p
r
o
p
o
s
ed
AE
S
-
C
HO
co
m
p
ar
ed
to
d
if
f
er
en
t
r
elate
d
wo
r
k
s
P
r
o
p
o
se
d
[
2
2
]
[
2
4
]
[
2
1
]
Ti
me(s
)
0
.
1
7
0
8
0
.
2
3
3
8
0
.
3
0
3
3
1
.
2
8
5.
CO
NCLU
SI
O
N
In
th
is
p
ap
er
,
to
en
h
a
n
ce
th
e
ef
f
icien
cy
a
n
d
s
u
itab
ilit
y
of
AE
S
f
o
r
cl
o
u
d
co
m
p
u
tin
g
,
we
p
r
o
p
o
s
e
a
m
o
d
if
ied
AE
S
en
cr
y
p
tio
n
u
tili
zin
g
a
c
h
ao
s
s
y
s
tem
.
T
h
e
p
r
o
p
o
s
ed
s
ch
em
e
,
AE
S
-
C
HO
,
im
p
r
o
v
es
s
ec
u
r
ity
by
in
teg
r
atin
g
t
h
e
Hén
o
n
m
ap
’
s
ch
ao
tic
ch
a
r
ac
ter
is
tics
with
th
e
AE
S
alg
o
r
ith
m
'
s
r
o
b
u
s
tn
es
s
.
T
h
e
Hén
o
n
m
ap
g
en
er
ates
u
n
p
r
ed
ictab
le,
p
s
e
u
d
o
-
r
a
n
d
o
m
k
ey
s
,
m
a
k
in
g
it
d
if
f
icu
lt
f
o
r
attac
k
er
s
to
p
r
ed
ict
th
e
k
e
y
.
Fu
r
th
er
m
o
r
e
,
u
s
in
g
a
cr
y
p
to
g
r
ap
h
ic
h
ash
f
u
n
ctio
n
en
s
u
r
es
th
at
th
e
cr
ea
ted
k
ey
s
ar
e
u
n
if
o
r
m
ly
d
is
tr
ib
u
ted
a
n
d
ap
p
r
o
p
r
iate
f
o
r
th
e
AE
S
alg
o
r
ith
m
.
T
h
e
co
m
p
u
ted
r
esu
lts
s
h
o
wn
in
t
h
e
p
r
e
v
io
u
s
s
ec
tio
n
s
h
o
wed
th
at
s
ec
u
r
ity
co
ef
f
icien
ts
ar
e
alr
ea
d
y
h
i
g
h
,
so
th
e
p
r
o
p
o
s
ed
a
p
p
r
o
ac
h
ca
n
be
a
d
o
p
te
d
as
SE
to
u
p
lo
a
d
d
if
f
er
en
t
im
ag
es
to
th
e
clo
u
d
s
er
v
er
.
Acc
o
r
d
in
g
to
s
tatis
t
ical
as
s
ess
m
en
t
s
,
th
is
m
eth
o
d
can
p
r
o
tect
th
e
im
ag
e
ag
ain
s
t
v
ar
io
u
s
attac
k
s
.
T
h
e
av
er
ag
e
en
tr
o
p
y
attain
ed
is
7
.
5
5
4
7
7
,
not
f
a
r
f
r
o
m
th
e
o
p
tim
al
v
alu
e,
8.
T
h
e
l
o
w
PS
NR
v
alu
es
of
all
en
cr
y
p
ted
im
ag
es
s
h
o
w
th
at
it
is
d
if
f
icu
lt
to
d
is
t
in
g
u
is
h
en
cr
y
p
te
d
f
r
o
m
p
lain
im
ag
es.
T
h
e
NPC
R
an
d
UACI
v
alu
es
ar
e
clo
s
e
to
th
ei
r
o
p
tim
al
v
alu
es.
T
h
er
e
f
o
r
e,
t
h
e
p
r
esen
t
m
eth
o
d
was
r
o
b
u
s
t
ag
ain
s
t
d
if
f
er
en
tial
attac
k
s
.
Fu
r
th
er
m
o
r
e,
th
e
an
al
y
s
is
r
esu
lts
also
s
h
o
wed
th
e
e
f
f
icien
cy
of
th
e
p
r
o
p
o
s
ed
m
eth
o
d
in
s
ig
n
if
ican
tl
y
r
ed
u
cin
g
th
e
p
ix
el
c
o
r
r
elatio
n
.
Fin
ally
,
th
e
p
r
o
p
o
s
ed
AE
S
-
C
HO
ac
h
iev
es
a
lo
wer
ex
ec
u
tio
n
tim
e
co
m
p
ar
e
d
to
ex
is
tin
g
ap
p
r
o
ac
h
es,
m
ak
in
g
it
more
ef
f
icien
t
an
d
s
u
itab
le
f
o
r
r
ea
l
-
tim
e
an
d
clo
u
d
co
m
p
u
tin
g
ap
p
licatio
n
s
.
Fo
r
f
u
tu
r
e
wo
r
k
,
we
can
u
s
e
o
th
er
ch
a
o
tic
m
ap
s
lik
e
th
e
L
o
r
en
z
s
y
s
tem
b
ec
au
s
e
of
its
h
i
g
h
er
lev
el
of
s
ec
u
r
ity
an
d
n
o
n
lin
ea
r
co
m
p
lex
ity
c
o
m
p
ar
ed
to
th
e
Hén
o
n
m
a
p
.
I
ts
s
tr
o
n
g
s
en
s
itiv
ity
to
in
iti
al
co
n
d
itio
n
s
an
d
ch
ao
tic
d
y
n
am
ics
m
a
k
es
it
a
p
r
o
m
is
in
g
tech
n
iq
u
e
f
o
r
e
n
h
an
cin
g
th
e
s
ec
u
r
ity
of
en
cr
y
p
tio
n
an
d
s
ec
u
r
e
co
m
m
u
n
icatio
n
s
y
s
tem
s
.
F
UNDING
I
NF
O
R
M
A
T
I
O
N
Au
th
o
r
s
s
tate
n
o
f
u
n
d
in
g
in
v
o
lv
ed
.
AUTHO
R
CO
NT
RI
B
UT
I
O
NS ST
A
T
E
M
E
N
T
T
h
is
jo
u
r
n
al
u
s
es
th
e
C
o
n
t
r
ib
u
to
r
R
o
les
T
a
x
o
n
o
m
y
(
C
R
ed
iT
)
to
r
ec
o
g
n
ize
in
d
iv
i
d
u
al
au
th
o
r
co
n
tr
ib
u
tio
n
s
,
r
ed
u
ce
au
th
o
r
s
h
ip
d
is
p
u
tes,
an
d
f
ac
ilit
ate
co
llab
o
r
atio
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ad
v
Ap
p
l Sci
I
SS
N:
2252
-
8
8
1
4
S
ea
r
ch
a
b
le
e
n
cryp
tio
n
b
a
s
ed
o
n
a
c
h
a
o
tic
s
ystem
a
n
d
A
E
S
a
lg
o
r
ith
m
(
F
a
ir
o
u
z
S
h
era
li
)
983
Na
m
e
o
f
Aut
ho
r
C
M
So
Va
Fo
I
R
D
O
E
Vi
Su
P
Fu
Fair
o
u
z
Sh
er
ali
✓
✓
✓
✓
✓
✓
✓
✓
Falah
Sar
h
an
✓
✓
✓
✓
✓
✓
✓
✓
C
:
C
o
n
c
e
p
t
u
a
l
i
z
a
t
i
o
n
M
:
M
e
t
h
o
d
o
l
o
g
y
So
:
So
f
t
w
a
r
e
Va
:
Va
l
i
d
a
t
i
o
n
Fo
:
Fo
r
mal
a
n
a
l
y
s
i
s
I
:
I
n
v
e
s
t
i
g
a
t
i
o
n
R
:
R
e
so
u
r
c
e
s
D
:
D
a
t
a
C
u
r
a
t
i
o
n
O
:
W
r
i
t
i
n
g
-
O
r
i
g
i
n
a
l
D
r
a
f
t
E
:
W
r
i
t
i
n
g
-
R
e
v
i
e
w
&
E
d
i
t
i
n
g
Vi
:
Vi
su
a
l
i
z
a
t
i
o
n
Su
:
Su
p
e
r
v
i
s
i
o
n
P
:
P
r
o
j
e
c
t
a
d
mi
n
i
st
r
a
t
i
o
n
Fu
:
Fu
n
d
i
n
g
a
c
q
u
i
si
t
i
o
n
CO
NF
L
I
C
T
O
F
I
N
T
E
R
E
S
T
ST
A
T
E
M
E
NT
Au
th
o
r
s
s
tate
n
o
co
n
f
lict o
f
in
t
er
est.
DATA AV
AI
L
AB
I
L
I
T
Y
T
h
e
d
ata
th
at
s
u
p
p
o
r
t
th
e
f
in
d
in
g
s
o
f
th
is
s
tu
d
y
ar
e
a
v
ailab
l
e
f
r
o
m
th
e
co
r
r
esp
o
n
d
i
n
g
au
t
h
o
r
,
[
FS
]
,
upon
r
ea
s
o
n
ab
le
r
eq
u
est.
RE
F
E
R
E
NC
E
S
[
1
]
P
.
P
r
a
j
a
p
a
t
i
a
n
d
P
.
S
h
a
h
,
“
A
r
e
v
i
e
w
o
n
s
e
c
u
r
e
d
a
t
a
d
e
d
u
p
l
i
c
a
t
i
o
n
:
c
l
o
u
d
st
o
r
a
g
e
se
c
u
r
i
t
y
i
ssu
e
,
”
J
o
u
rn
a
l
o
f
K
i
n
g
S
a
u
d
U
n
i
v
e
rsi
t
y
-
C
o
m
p
u
t
e
r
a
n
d
I
n
f
o
rm
a
t
i
o
n
S
c
i
e
n
c
e
s
,
v
o
l
.
3
4
,
n
o
.
7
,
p
p
.
3
9
9
6
–
4
0
0
7
,
2
0
2
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
k
su
c
i
.
2
0
2
0
.
1
0
.
0
2
1
.
[
2
]
K
.
S
a
si
k
u
mar
a
n
d
S
.
N
a
g
a
r
a
j
a
n
,
“
C
o
mp
r
e
h
e
n
si
v
e
r
e
v
i
e
w
a
n
d
a
n
a
l
y
s
i
s
o
f
c
r
y
p
t
o
g
r
a
p
h
y
t
e
c
h
n
i
q
u
e
s
i
n
c
l
o
u
d
c
o
mp
u
t
i
n
g
,
”
I
EEE
Ac
c
e
ss
,
v
o
l
.
1
2
,
p
p
.
5
2
3
2
5
–
5
2
3
5
1
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
4
.
3
3
8
5
4
4
9
.
[
3
]
Q
.
Z
h
a
n
g
,
M
.
F
u
,
Z
.
Zh
a
o
,
a
n
d
Y
.
H
u
a
n
g
,
“
S
e
a
r
c
h
a
b
l
e
e
n
c
r
y
p
t
i
o
n
o
v
e
r
e
n
c
r
y
p
t
e
d
sp
e
e
c
h
r
e
t
r
i
e
v
a
l
sc
h
e
m
e
i
n
c
l
o
u
d
s
t
o
r
a
g
e
,
”
J
o
u
rn
a
l
o
f
I
n
f
o
rm
a
t
i
o
n
S
e
c
u
r
i
t
y
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
7
6
,
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
i
sa
.
2
0
2
3
.
1
0
3
5
4
2
.
[
4
]
A
.
R
a
j
a
g
o
p
a
l
a
n
e
t
a
l
.
,
“
Em
p
o
w
e
r
i
n
g
p
o
w
e
r
d
i
st
r
i
b
u
t
i
o
n
:
u
n
l
e
a
sh
i
n
g
t
h
e
s
y
n
e
r
g
y
o
f
I
o
T
a
n
d
c
l
o
u
d
c
o
m
p
u
t
i
n
g
f
o
r
su
st
a
i
n
a
b
l
e
a
n
d
e
f
f
i
c
i
e
n
t
e
n
e
r
g
y
s
y
st
e
ms,
”
R
e
s
u
l
t
s i
n
En
g
i
n
e
e
ri
n
g
,
v
o
l
.
2
1
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
r
i
n
e
n
g
.
2
0
2
4
.
1
0
1
9
4
9
.
[
5
]
D
.
X
.
S
o
n
g
,
D
.
W
a
g
n
e
r
,
a
n
d
A
.
P
e
r
r
i
g
,
“
P
r
a
c
t
i
c
a
l
t
e
c
h
n
i
q
u
e
s
f
o
r
s
e
a
r
c
h
e
s
o
n
e
n
c
r
y
p
t
e
d
d
a
t
a
,
”
Pr
o
c
e
e
d
i
n
g
s
o
f
t
h
e
I
EE
E
C
o
m
p
u
t
e
r
S
o
c
i
e
t
y
S
y
m
p
o
s
i
u
m
o
n
R
e
se
a
rc
h
i
n
S
e
c
u
r
i
t
y
a
n
d
Pr
i
v
a
c
y
,
p
p
.
4
4
–
5
5
,
2
0
0
0
,
d
o
i
:
1
0
.
1
1
0
9
/
s
e
c
p
r
i
.
2
0
0
0
.
8
4
8
4
4
5
.
[
6
]
E.
R
o
b
a
c
k
a
n
d
M
.
D
w
o
r
k
i
n
,
“
F
i
r
st
a
d
v
a
n
c
e
d
e
n
c
r
y
p
t
i
o
n
st
a
n
d
a
r
d
(
A
ES)
c
a
n
d
i
d
a
t
e
c
o
n
f
e
r
e
n
c
e
-
v
e
n
t
u
r
a
,
C
A
,
A
u
g
u
st
2
0
-
2
2
,
1
9
98
,”
J
o
u
rn
a
l
o
f
R
e
se
a
rc
h
o
f
t
h
e
N
a
t
i
o
n
a
l
I
n
s
t
i
t
u
t
e
o
f
S
t
a
n
d
a
r
d
s
a
n
d
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
1
0
4
,
n
o
.
1
,
1
9
9
9
.
[
O
n
l
i
n
e
]
A
v
a
i
l
a
b
l
e
:
h
t
t
p
s
:
/
/
w
w
w
.
p
r
o
q
u
e
st
.
c
o
m/
o
p
e
n
v
i
e
w
/
3
2
c
1
2
e
d
1
5
a
d
9
0
7
6
4
0
f
7
e
0
6
1
2
a
4
b
e
a
e
2
0
/
1
?
c
b
l
=
4
8
0
7
1
&p
q
-
o
r
i
g
s
i
t
e
=
g
sc
h
o
l
a
r
[
7
]
F
.
S
h
e
r
a
l
i
,
“
A
n
e
w
a
p
p
r
o
a
c
h
f
o
r
e
n
h
a
n
c
i
n
g
A
ES
-
b
a
s
e
d
d
a
t
a
e
n
c
r
y
p
t
i
o
n
u
si
n
g
E
C
C
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
Ma
t
h
e
m
a
t
i
c
s
a
n
d
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
,
v
o
l
.
1
9
,
n
o
.
1
,
p
p
.
2
2
9
–
2
3
5
,
2
0
2
4
.
[
O
n
l
i
n
e
]
A
v
a
i
l
a
b
l
e
:
h
t
t
p
s:
/
/
f
u
t
u
r
e
-
in
-
t
e
c
h
.
n
e
t
/
1
9
.
1
/
R
-
F
a
i
r
o
u
z
S
h
e
r
a
l
i
.
p
d
f
[
8
]
R
.
M
.
D
a
v
i
s
,
“
Th
e
d
a
t
a
e
n
c
r
y
p
t
i
o
n
s
t
a
n
d
a
r
d
i
n
p
e
r
s
p
e
c
t
i
v
e
,
”
I
EEE
C
o
m
m
u
n
i
c
a
t
i
o
n
s
S
o
c
i
e
t
y
M
a
g
a
z
i
n
e
,
v
o
l
.
1
6
,
n
o
.
6
,
p
p
.
5
–
9
,
1
9
7
8
,
d
o
i
:
1
0
.
1
1
0
9
/
M
C
O
M
.
1
9
7
8
.
1
0
8
9
7
7
1
.
[
9
]
P
.
P
a
t
i
l
,
P
.
N
a
r
a
y
a
n
k
a
r
,
D
.
G
.
N
a
r
a
y
a
n
,
a
n
d
S
.
M
.
M
e
e
n
a
,
“
A
c
o
m
p
r
e
h
e
n
si
v
e
e
v
a
l
u
a
t
i
o
n
o
f
c
r
y
p
t
o
g
r
a
p
h
i
c
a
l
g
o
r
i
t
h
ms:
D
ES
,
3
D
ES
,
A
ES,
R
S
A
a
n
d
B
l
o
w
f
i
s
h
,
”
Pr
o
c
e
d
i
a
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
,
v
o
l
.
7
8
,
p
p
.
6
1
7
–
6
2
4
,
2
0
1
6
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
p
r
o
c
s.
2
0
1
6
.
0
2
.
1
0
8
.
[
1
0
]
F
.
S
h
e
r
a
l
i
a
n
d
S
.
F
a
l
a
h
,
“
A
n
e
f
f
i
c
i
e
n
t
t
w
o
f
a
c
t
o
r
u
s
e
r
a
u
t
h
e
n
t
i
c
a
t
i
o
n
a
n
d
k
e
y
e
x
c
h
a
n
g
e
p
r
o
t
o
c
o
l
f
o
r
t
e
l
e
c
a
r
e
me
d
i
c
a
l
i
n
f
o
r
m
a
t
i
o
n
sy
st
e
m,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
M
a
t
h
e
m
a
t
i
c
s
a
n
d
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
,
v
o
l
.
1
5
,
n
o
.
4
,
p
p
.
1
0
1
5
–
1
0
2
7
,
2
0
2
0
.
[
O
n
l
i
n
e
]
A
v
a
i
l
a
b
l
e
:
ht
t
p
s
:
/
/
f
u
t
u
r
e
-
in
-
t
e
c
h
.
n
e
t
/
1
5
.
4
/
R
-
F
a
i
r
o
o
z
.
p
d
f
[
1
1
]
F
.
M
a
l
l
o
u
l
i
,
A
.
H
e
l
l
a
l
,
N
.
S
.
S
a
e
e
d
,
a
n
d
F
.
A
.
A
l
z
a
h
r
a
n
i
,
“
A
su
r
v
e
y
o
n
c
r
y
p
t
o
g
r
a
p
h
y
:
c
o
m
p
a
r
a
t
i
v
e
s
t
u
d
y
b
e
t
w
e
e
n
R
S
A
v
s
E
C
C
a
l
g
o
r
i
t
h
ms,
a
n
d
R
S
A
v
s E
l
-
G
a
m
a
l
a
l
g
o
r
i
t
h
ms
,
”
i
n
Pr
o
c
e
e
d
i
n
g
s
-
6
t
h
I
E
EE
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
C
y
b
e
r S
e
c
u
r
i
t
y
a
n
d
C
l
o
u
d
C
o
m
p
u
t
i
n
g
,
C
S
C
l
o
u
d
2
0
1
9
a
n
d
5
t
h
I
EEE
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
E
d
g
e
C
o
m
p
u
t
i
n
g
a
n
d
S
c
a
l
a
b
l
e
C
l
o
u
d
,
Ed
g
e
C
o
m
2
0
1
9
,
2
0
1
9
,
p
p
.
1
7
3
–
1
7
6
,
d
o
i
:
1
0
.
1
1
0
9
/
C
S
C
l
o
u
d
/
E
d
g
e
C
o
m
.
2
0
1
9
.
0
0
0
2
2
.
[
1
2
]
L.
L
i
,
“
A
n
o
v
e
l
c
h
a
o
t
i
c
m
a
p
a
p
p
l
i
c
a
t
i
o
n
i
n
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
,
”
E
x
p
e
rt
S
y
s
t
e
m
s
w
i
t
h
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
2
5
2
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
e
sw
a
.
2
0
2
4
.
1
2
4
3
1
6
.
[
1
3
]
T.
U
mar,
M
.
N
a
d
e
e
m,
a
n
d
F
.
A
n
w
e
r
,
“
C
h
a
o
s
b
a
se
d
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
sc
h
e
m
e
t
o
s
e
c
u
r
e
s
e
n
si
t
i
v
e
mu
l
t
i
me
d
i
a
c
o
n
t
e
n
t
i
n
c
l
o
u
d
st
o
r
a
g
e
,
”
Ex
p
e
r
t
S
y
s
t
e
m
s
w
i
t
h
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
2
5
7
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
e
sw
a
.
2
0
2
4
.
1
2
5
0
5
0
.
[
1
4
]
M
.
A
l
a
w
i
d
a
,
“
A
n
o
v
e
l
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
b
a
s
e
d
o
n
c
y
c
l
i
c
c
h
a
o
t
i
c
ma
p
i
n
i
n
d
u
st
r
i
a
l
I
o
T
e
n
v
i
r
o
n
m
e
n
t
s,
”
I
EEE
T
ra
n
s
a
c
t
i
o
n
s
o
n
I
n
d
u
st
r
i
a
l
I
n
f
o
rm
a
t
i
c
s
,
v
o
l
.
2
0
,
n
o
.
8
,
p
p
.
1
0
5
3
0
–
1
0
5
4
1
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
0
9
/
TI
I
.
2
0
2
4
.
3
3
9
5
6
3
1
.
[
1
5
]
R
.
L
i
,
T.
Li
u
,
a
n
d
J.
Y
i
n
,
“
A
n
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
f
o
r
c
o
l
o
r
i
ma
g
e
s
b
a
s
e
d
o
n
a
n
i
m
p
r
o
v
e
d
d
u
a
l
-
c
h
a
o
t
i
c
s
y
st
e
m
c
o
mb
i
n
e
d
w
i
t
h
D
N
A
e
n
c
o
d
i
n
g
,
”
S
c
i
e
n
t
i
f
i
c
R
e
p
o
rt
s
,
v
o
l
.
1
4
,
n
o
.
1
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
3
8
/
s
4
1
5
9
8
-
0
2
4
-
7
1
2
6
7
-
9.
[
1
6
]
Z.
R
a
h
m
a
n
,
X
.
Y
i
,
M
.
B
i
l
l
a
h
,
M
.
S
u
mi
,
a
n
d
A
.
A
n
w
a
r
,
“
En
h
a
n
c
i
n
g
A
E
S
u
si
n
g
c
h
a
o
s
a
n
d
l
o
g
i
s
t
i
c
ma
p
-
b
a
se
d
k
e
y
g
e
n
e
r
a
t
i
o
n
t
e
c
h
n
i
q
u
e
f
o
r
se
c
u
r
i
n
g
I
o
T
-
b
a
se
d
sm
a
r
t
h
o
me
,
”
El
e
c
t
ro
n
i
c
s
,
v
o
l
.
1
1
,
n
o
.
7
,
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
e
l
e
c
t
r
o
n
i
c
s
1
1
0
7
1
0
8
3
.
[
1
7
]
Z.
Q
i
a
o
,
S
.
E
.
A
ssa
d
,
a
n
d
I
.
Ta
r
a
l
o
v
a
,
“
D
e
si
g
n
o
f
s
e
c
u
r
e
c
r
y
p
t
o
sy
s
t
e
m
b
a
se
d
o
n
c
h
a
o
t
i
c
c
o
m
p
o
n
e
n
t
s
a
n
d
A
E
S
S
-
B
o
x
,”
AEU
-
In
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
E
l
e
c
t
r
o
n
i
c
s
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
s
,
v
o
l
.
1
2
1
,
2
0
2
0
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
a
e
u
e
.
2
0
2
0
.
1
5
3
2
0
5
.
[
1
8
]
E.
G
o
k
c
a
y
a
n
d
H
.
T
o
r
a
,
“
A
n
o
v
e
l
d
a
t
a
e
n
c
r
y
p
t
i
o
n
m
e
t
h
o
d
u
s
i
n
g
a
n
i
n
t
e
r
l
a
c
e
d
c
h
a
o
t
i
c
t
r
a
n
sf
o
r
m
,
”
Ex
p
e
rt
S
y
s
t
e
m
s
w
i
t
h
Ap
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
2
3
7
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
e
sw
a
.
2
0
2
3
.
1
2
1
4
9
4
.
[
1
9
]
Ü
.
Ç
a
v
u
ş
o
ğ
l
u
,
S
.
K
a
ç
a
r
,
A
.
Ze
n
g
i
n
,
a
n
d
I
.
P
e
h
l
i
v
a
n
,
“
A
n
o
v
e
l
h
y
b
r
i
d
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
b
a
se
d
o
n
c
h
a
o
s a
n
d
S
-
A
ES
a
l
g
o
r
i
t
h
m
,
”
N
o
n
l
i
n
e
a
r Dy
n
a
m
i
c
s
,
v
o
l
.
9
2
,
n
o
.
4
,
p
p
.
1
7
4
5
–
1
7
5
9
,
J
u
n
.
2
0
1
8
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
1
0
7
1
-
0
1
8
-
4
1
5
9
-
4.
[
2
0
]
F
.
A
r
t
u
ğ
e
r
a
n
d
F
.
Ö
z
k
a
y
n
a
k
,
“
A
n
e
w
p
o
st
-
p
r
o
c
e
ssi
n
g
a
p
p
r
o
a
c
h
f
o
r
i
mp
r
o
v
e
me
n
t
o
f
n
o
n
l
i
n
e
a
r
i
t
y
p
r
o
p
e
r
t
y
i
n
su
b
st
i
t
u
t
i
o
n
b
o
x
e
s,
”
I
n
t
e
g
r
a
t
i
o
n
,
v
o
l
.
9
4
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
v
l
s
i
.
2
0
2
3
.
1
0
2
1
0
5
.
[
2
1
]
J.
A
r
i
f
e
t
a
l
.
,
“
A
n
o
v
e
l
c
h
a
o
t
i
c
p
e
r
mu
t
a
t
i
o
n
-
su
b
st
i
t
u
t
i
o
n
i
m
a
g
e
e
n
c
r
y
p
t
i
o
n
s
c
h
e
m
e
b
a
se
d
o
n
l
o
g
i
st
i
c
ma
p
a
n
d
r
a
n
d
o
m s
u
b
s
t
i
t
u
t
i
o
n
,
”
I
EEE
A
c
c
e
ss
,
v
o
l
.
1
0
,
p
p
.
1
2
9
6
6
–
1
2
9
8
2
,
2
0
2
2
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
2
.
3
1
4
6
7
9
2
.
[
2
2
]
Z.
H
u
a
,
Y
.
Z
h
o
u
,
C
.
M
.
P
u
n
,
a
n
d
C
.
L.
P
.
C
h
e
n
,
“
2
D
S
i
n
e
l
o
g
i
st
i
c
mo
d
u
l
a
t
i
o
n
ma
p
f
o
r
i
m
a
g
e
e
n
c
r
y
p
t
i
o
n
,
”
I
n
f
o
r
m
a
t
i
o
n
S
c
i
e
n
c
e
s
,
v
o
l
.
2
9
7
,
p
p
.
8
0
–
9
4
,
2
0
1
5
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
i
n
s.
2
0
1
4
.
1
1
.
0
1
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8
8
1
4
I
n
t J Ad
v
Ap
p
l Sci
,
Vo
l.
14
,
No
.
3
,
Sep
tem
b
er
20
25
:
975
-
9
8
4
984
[
2
3
]
M
.
S
h
a
r
i
a
t
z
a
d
e
h
,
M
.
J.
R
o
st
a
mi
,
a
n
d
M
.
Ef
t
e
k
h
a
r
i
,
“
P
r
o
p
o
s
i
n
g
a
n
o
v
e
l
d
y
n
a
m
i
c
A
ES
f
o
r
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
u
s
i
n
g
a
c
h
a
o
t
i
c
m
a
p
k
e
y
m
a
n
a
g
e
me
n
t
a
p
p
r
o
a
c
h
,
”
O
p
t
i
k
,
v
o
l
.
2
4
6
,
2
0
2
1
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
i
j
l
e
o
.
2
0
2
1
.
1
6
7
7
7
9
.
[
2
4
]
A
.
A
l
a
n
e
z
i
e
t
a
l
.
,
“
S
e
c
u
r
i
n
g
d
i
g
i
t
a
l
i
ma
g
e
s
t
h
r
o
u
g
h
s
i
m
p
l
e
p
e
r
m
u
t
a
t
i
o
n
-
su
b
st
i
t
u
t
i
o
n
mec
h
a
n
i
sm
i
n
c
l
o
u
d
-
b
a
s
e
d
s
mart
c
i
t
y
e
n
v
i
r
o
n
m
e
n
t
,
”
S
e
c
u
r
i
t
y
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
N
e
t
w
o
r
k
s
,
v
o
l
.
2
0
2
1
,
2
0
2
1
,
d
o
i
:
1
0
.
1
1
5
5
/
2
0
2
1
/
6
6
1
5
5
1
2
.
[
2
5
]
F
.
S
.
A
l
i
a
n
d
S
.
Lu
,
“
S
e
a
r
c
h
a
b
l
e
e
n
c
r
y
p
t
i
o
n
w
i
t
h
c
o
n
j
u
n
c
t
i
v
e
f
i
e
l
d
f
r
e
e
k
e
y
w
o
r
d
s
e
a
r
c
h
sc
h
e
m
e
,
”
2
0
1
6
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
N
e
t
w
o
r
k
a
n
d
I
n
f
o
rm
a
t
i
o
n
S
y
s
t
e
m
s
f
o
r
C
o
m
p
u
t
e
rs (I
C
N
I
S
C
)
,
p
p
.
2
6
0
–
2
6
4
,
2
0
1
6
,
d
o
i
:
1
0
.
1
1
0
9
/
i
c
n
i
s
c
.
2
0
1
6
.
0
6
4
.
[
2
6
]
H
.
B
.
H
o
w
a
n
d
S
.
H
.
H
e
n
g
,
“
B
l
o
c
k
c
h
a
i
n
-
e
n
a
b
l
e
d
se
a
r
c
h
a
b
l
e
e
n
c
r
y
p
t
i
o
n
i
n
c
l
o
u
d
s:
a
r
e
v
i
e
w
,
”
J
o
u
rn
a
l
o
f
I
n
f
o
rm
a
t
i
o
n
S
e
c
u
r
i
t
y
a
n
d
Ap
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
6
7
,
2
0
2
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
i
s
a
.
2
0
2
2
.
1
0
3
1
8
3
.
[
2
7
]
C
.
B
ö
sc
h
,
P
.
H
a
r
t
e
l
,
W
.
Jo
n
k
e
r
,
a
n
d
A
.
P
e
t
e
r
,
“
A
s
u
r
v
e
y
o
f
p
r
o
v
a
b
l
y
se
c
u
r
e
s
e
a
r
c
h
a
b
l
e
e
n
c
r
y
p
t
i
o
n
,
”
A
C
M
C
o
m
p
u
t
i
n
g
S
u
r
v
e
y
s
,
v
o
l
.
4
7
,
n
o
.
2
,
2
0
1
4
,
d
o
i
:
1
0
.
1
1
4
5
/
2
6
3
6
3
2
8
.
[
2
8
]
D
.
B
o
n
e
h
,
G
.
D
.
C
r
e
sc
e
n
z
o
,
R
.
O
st
r
o
v
s
k
y
,
a
n
d
G
.
P
e
r
si
a
n
o
,
“
P
u
b
l
i
c
k
e
y
e
n
c
r
y
p
t
i
o
n
w
i
t
h
k
e
y
w
o
r
d
sea
r
c
h
,
”
L
e
c
t
u
re
N
o
t
e
s
i
n
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
(
i
n
c
l
u
d
i
n
g
su
b
s
e
ri
e
s
L
e
c
t
u
re
N
o
t
e
s
i
n
Ar
t
i
f
i
c
i
a
l
I
n
t
e
l
l
i
g
e
n
c
e
a
n
d
L
e
c
t
u
r
e
N
o
t
e
s
i
n
B
i
o
i
n
f
o
rm
a
t
i
c
s)
,
v
o
l
.
3
0
2
7
,
p
p
.
5
0
6
–
5
2
2
,
2
0
0
4
,
d
o
i
:
1
0
.
1
0
0
7
/
9
7
8
-
3
-
5
4
0
-
2
4
6
7
6
-
3
_
3
0
.
[
2
9
]
F
.
S
.
A
l
i
,
H
.
N
.
S
a
a
d
,
F
.
H
.
S
a
r
h
a
n
,
a
n
d
B
.
N
a
a
e
e
m,
“
E
n
h
a
n
c
e
ma
n
e
t
u
s
a
b
i
l
i
t
y
f
o
r
e
n
c
r
y
p
t
e
d
d
a
t
a
r
e
t
r
i
e
v
a
l
f
r
o
m
c
l
o
u
d
c
o
m
p
u
t
i
n
g
,
”
I
n
d
o
n
e
si
a
n
J
o
u
r
n
a
l
o
f
E
l
e
c
t
r
i
c
a
l
E
n
g
i
n
e
e
ri
n
g
a
n
d
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
,
v
o
l
.
1
8
,
n
o
.
1
,
p
p
.
6
4
–
7
4
,
2
0
1
9
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
e
c
s
.
v
1
8
.
i
1
.
p
p
6
4
-
7
4
.
[
3
0
]
M
.
S
.
U
m
m
a
h
,
“
A
d
v
a
n
c
e
d
e
n
c
r
y
p
t
i
o
n
st
a
n
d
a
r
d
(
A
E
S
)
,
”
S
u
s
t
a
i
n
a
b
i
l
i
t
y
,
v
o
l
.
1
1
,
n
o
.
1
,
p
p
.
1
–
1
4
,
2
0
1
9
,
d
o
i
:
1
0
.
6
0
2
8
/
N
I
S
T.
F
I
P
S
.
1
9
7
.
[
3
1
]
A
.
M
.
A
b
d
u
l
l
a
h
,
“
A
d
v
a
n
c
e
d
e
n
c
r
y
p
t
i
o
n
st
a
n
d
a
r
d
(
A
ES)
a
l
g
o
r
i
t
h
m
t
o
e
n
c
r
y
p
t
a
n
d
d
e
c
r
y
p
t
d
a
t
a
,
”
C
ry
p
t
o
g
ra
p
h
y
a
n
d
N
e
t
w
o
rk
S
e
c
u
r
i
t
y
,
v
o
l
.
1
6
,
n
o
.
1
,
2
0
1
7
.
[
3
2
]
M
.
N
.
A
l
e
n
e
z
i
,
H
.
A
l
a
b
d
u
l
r
a
z
z
a
q
,
a
n
d
N
.
Q
.
M
o
h
a
mm
a
d
,
“
S
y
mm
e
t
r
i
c
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
ms
:
r
e
v
i
e
w
a
n
d
e
v
a
l
u
a
t
i
o
n
s
t
u
d
y
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
C
o
m
m
u
n
i
c
a
t
i
o
n
N
e
t
w
o
r
k
s
a
n
d
I
n
f
o
rm
a
t
i
o
n
S
e
c
u
r
i
t
y
,
v
o
l
.
1
2
,
n
o
.
2
,
p
p
.
2
5
6
–
2
7
2
,
2
0
2
0
.
[
3
3
]
C
.
P
a
k
a
n
d
L
.
H
u
a
n
g
,
“
A
n
e
w
c
o
l
o
r
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
u
si
n
g
c
o
m
b
i
n
a
t
i
o
n
o
f
t
h
e
1
D
c
h
a
o
t
i
c
m
a
p
,
”
S
i
g
n
a
l
Pr
o
c
e
ssi
n
g
,
v
o
l
.
1
3
8
,
p
p
.
1
2
9
–
1
3
7
,
2
0
1
7
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
si
g
p
r
o
.
2
0
1
7
.
0
3
.
0
1
1
.
[
3
4
]
R
.
L
.
D
e
v
a
n
e
y
,
A
n
i
n
t
ro
d
u
c
t
i
o
n
t
o
c
h
a
o
t
i
c
d
y
n
a
m
i
c
a
l
sys
t
e
m
s
.
N
e
w
Y
o
r
k
,
U
S
A
:
C
h
a
p
ma
n
a
n
d
H
a
l
l
/
C
R
C
,
2
0
2
1
.
[
3
5
]
H
.
Zh
u
,
Y
.
Z
h
a
o
,
a
n
d
Y
.
S
o
n
g
,
“
2
D
l
o
g
i
s
t
i
c
-
mo
d
u
l
a
t
e
d
-
si
n
e
-
c
o
u
p
l
i
n
g
-
l
o
g
i
st
i
c
c
h
a
o
t
i
c
ma
p
f
o
r
i
m
a
g
e
e
n
c
r
y
p
t
i
o
n
,
”
I
EEE
Ac
c
e
ss
,
v
o
l
.
7
,
p
p
.
1
4
0
8
1
–
1
4
0
9
8
,
2
0
1
9
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
1
9
.
2
8
9
3
5
3
8
.
[
3
6
]
M
.
H
é
n
o
n
,
“
A
t
wo
-
d
i
me
n
si
o
n
a
l
ma
p
p
i
n
g
w
i
t
h
a
s
t
r
a
n
g
e
a
t
t
r
a
c
t
o
r
,
”
C
o
m
m
u
n
i
c
a
t
i
o
n
s
i
n
Ma
t
h
e
m
a
t
i
c
a
l
P
h
y
s
i
c
s
,
v
o
l
.
5
0
,
n
o
.
1
,
p
p
.
6
9
–
7
7
,
F
e
b
.
1
9
7
6
,
d
o
i
:
1
0
.
1
0
0
7
/
B
F
0
1
6
0
8
5
5
6
.
[
3
7
]
M
.
A
.
L
o
n
e
a
n
d
S
.
Q
u
r
e
s
h
i
,
“
A
s
e
c
u
r
i
t
y
a
l
g
o
r
i
t
h
m
f
o
r
i
ma
g
e
s
b
a
se
d
o
n
2
D
l
o
g
i
s
t
i
c
m
a
p
u
s
i
n
g
b
i
t
-
l
e
v
e
l
a
n
d
p
i
x
e
l
-
l
e
v
e
l
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
a
p
p
r
o
a
c
h
e
s
,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
C
o
m
p
u
t
i
n
g
a
n
d
D
i
g
i
t
a
l
S
y
s
t
e
m
s
,
v
o
l
.
1
4
,
n
o
.
1
,
p
p
.
6
3
3
–
6
4
1
,
2
0
2
3
,
d
o
i
:
1
0
.
1
2
7
8
5
/
i
j
c
d
s
/
1
4
0
1
4
8
.
[
3
8
]
A
.
S
a
l
i
m,
K
.
A
.
M
o
h
a
mm
e
d
,
F
.
M
.
J
a
sem,
a
n
d
A
.
M
.
S
a
g
h
e
e
r
,
“
I
mag
e
st
e
g
a
n
o
g
r
a
p
h
y
t
e
c
h
n
i
q
u
e
b
a
se
d
o
n
L
o
r
e
n
z
C
h
a
o
t
i
c
s
y
st
e
m
a
n
d
b
l
o
o
m
f
i
l
t
e
r
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
C
o
m
p
u
t
i
n
g
a
n
d
D
i
g
i
t
a
l
S
y
s
t
e
m
s
,
v
o
l
.
1
6
,
n
o
.
1
,
p
p
.
8
5
1
–
8
5
9
,
2
0
2
4
,
d
o
i
:
1
0
.
1
2
7
8
5
/
i
j
c
d
s
/
1
6
0
1
6
1
.
[
3
9
]
S
.
N
i
u
,
R
.
X
u
e
,
a
n
d
C
.
D
i
n
g
,
“
A
d
u
a
l
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
me
t
h
o
d
b
a
s
e
d
o
n
i
mp
r
o
v
e
d
H
é
n
o
n
ma
p
p
i
n
g
a
n
d
i
mp
r
o
v
e
d
l
o
g
i
st
i
c
map
p
i
n
g
,
”
M
u
l
t
i
m
e
d
i
a
T
o
o
l
s
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
1
1
,
n
o
.
1
,
p
p
.
1
–
1
4
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
0
7
/
s1
1
0
4
2
-
0
2
4
-
1
9
1
5
7
-
0.
[
4
0
]
D.
S
i
n
g
h
,
S
.
K
a
u
r
,
M
.
K
a
u
r
,
S
.
S
i
n
g
h
,
M
.
K
a
u
r
,
a
n
d
H
.
N
.
Le
e
,
“
A
sy
s
t
e
mat
i
c
l
i
t
e
r
a
t
u
r
e
r
e
v
i
e
w
o
n
c
h
a
o
t
i
c
m
a
p
s
-
b
a
se
d
i
ma
g
e
sec
u
r
i
t
y
t
e
c
h
n
i
q
u
e
s,
”
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
R
e
v
i
e
w
,
v
o
l
.
5
4
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
o
sr
e
v
.
2
0
2
4
.
1
0
0
6
5
9
.
B
I
O
G
RAP
H
I
E
S
OF
AUTH
O
RS
Fa
iro
u
z
S
h
e
r
a
li
is
an
As
s
o
c
iate
P
ro
fe
ss
o
r
at
t
h
e
De
p
a
rtm
e
n
t
of
Co
m
p
u
ter
S
c
ien
c
e
,
Ku
fa
Un
iv
e
rsit
y
,
Ira
q
.
S
h
e
re
c
e
iv
e
d
h
e
r
Ph
.
D
.
in
i
n
fo
rm
a
ti
o
n
se
c
u
rit
y
fro
m
Hu
a
z
h
o
n
g
U
n
iv
e
rsit
y
(HU
S
T)
in
2
0
1
7
.
He
r
m
a
in
tea
c
h
in
g
a
n
d
re
se
a
rc
h
in
tere
sts
i
n
c
lu
d
e
d
e
v
e
lo
p
in
g
S
e
a
rc
h
a
b
le
e
n
c
ry
p
ti
o
n
a
lg
o
rit
h
m
s
in
c
l
o
u
d
c
o
m
p
u
ti
n
g
.
S
h
e
h
a
s
p
u
b
li
s
h
e
d
se
v
e
ra
l
re
se
a
rc
h
a
rti
c
le
s
in
In
tern
a
ti
o
n
a
l
Jo
u
rn
a
ls
o
f
M
a
t
h
e
m
a
ti
c
s
a
n
d
Co
m
p
u
ter
S
c
ien
c
e
.
S
h
e
can
be
c
o
n
tac
ted
at
e
m
a
il
:
fa
iro
o
z
m
.
jaa
fa
r@u
o
k
u
fa
.
e
d
u
.
i
q
.
Fa
la
h
S
a
r
h
a
n
is
an
As
so
c
iate
P
ro
fe
ss
o
r
at
t
h
e
De
p
a
rtme
n
t
of
M
a
th
e
m
a
ti
c
s,
Ku
fa
Un
iv
e
rsity
,
Ira
q
.
H
e
re
c
e
iv
e
d
h
i
s
Ph
.
D
.
in
n
u
m
e
rica
l
a
n
a
ly
sis
fro
m
Hu
a
z
h
o
n
g
U
n
iv
e
rsit
y
(HU
S
T)
in
2
0
1
7
.
His
m
a
in
tea
c
h
in
g
a
n
d
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
n
u
m
e
rica
l
a
n
a
ly
sis,
fu
n
c
ti
o
n
a
l
a
n
a
ly
sis,
a
n
d
a
p
p
l
ied
m
a
th
e
m
a
ti
c
s
.
He
h
a
s
p
u
b
li
sh
e
d
s
e
v
e
ra
l
re
se
a
rc
h
a
rti
c
les
in
In
tern
a
ti
o
n
a
l
Jo
u
rn
a
ls
o
f
M
a
th
e
m
a
ti
c
s
a
n
d
Co
m
p
u
ter
S
c
ien
c
e
.
He
can
be
c
o
n
tac
ted
at
e
m
a
il
:
fa
lah
h
.
sa
rh
a
n
@
u
o
k
u
fa
.
e
d
u
.
i
q
.
Evaluation Warning : The document was created with Spire.PDF for Python.