I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
wer
E
lect
ro
nics
a
nd
Driv
e
S
y
s
t
em
(
I
J
P
E
DS)
Vo
l.
16
,
No
.
3
,
Sep
tem
b
er
20
25
,
p
p
.
1
4
3
8
~
1
4
4
5
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/ijp
ed
s
.
v
16
.i
3
.
p
p
1
4
3
8
-
1
4
4
5
1438
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
p
e
d
s
.
ia
esco
r
e.
co
m
Accurate
sta
te
o
f
hea
lth
esti
ma
tion
using
hybrid a
lg
o
rithm
for
elect
ric
vehicle
battery pa
ck
per
forma
nce and e
ff
icie
ncy
enha
ncemen
t
Ra
j
esh
K
um
a
r
P
ra
k
hy
a
1,
2
,
P
uv
v
ula
Venk
a
t
a
R
a
ma
K
rish
na
1
1
D
e
p
a
r
t
me
n
t
o
f
El
e
c
t
r
i
c
a
l
En
g
i
n
e
e
r
i
n
g
,
G
a
n
d
h
i
I
n
st
i
t
u
t
e
o
f
Te
c
h
n
o
l
o
g
y
a
n
d
M
a
n
a
g
e
m
e
n
t
(
G
I
TA
M
)
,
H
y
d
e
r
a
b
a
d
,
I
n
d
i
a
2
D
e
p
a
r
t
me
n
t
o
f
El
e
c
t
r
i
c
a
l
a
n
d
El
e
c
t
r
o
n
i
c
s E
n
g
i
n
e
e
r
i
n
g
,
C
V
R
C
o
l
l
e
g
e
o
f
E
n
g
i
n
e
e
r
i
n
g
,
I
b
r
a
h
i
mp
a
t
n
a
m,
I
n
d
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
an
2
0
,
2
0
2
5
R
ev
is
ed
Ma
y
3
,
2
0
2
5
Acc
ep
ted
Ma
y
2
5
,
2
0
2
5
Tem
p
e
ra
tu
re
flu
c
t
u
a
ti
o
n
s,
o
v
e
rc
h
a
rg
in
g
,
a
n
d
o
v
e
r
-
d
isc
h
a
rg
in
g
a
re
a
ll
issu
e
s
th
a
t
c
a
n
c
a
u
se
fa
st
d
e
teri
o
ra
ti
o
n
,
c
a
p
a
c
it
y
l
o
ss
,
a
n
d
th
e
rm
a
l
r
u
n
a
wa
y
i
n
li
th
i
u
m
-
io
n
b
a
tt
e
ries
(LI
Bs).
T
o
o
v
e
rc
o
m
e
th
e
se
c
h
a
ll
e
n
g
e
s,
a
h
y
b
rid
m
o
d
e
l
c
o
m
b
in
i
n
g
a
sta
c
k
e
d
re
c
u
rre
n
t
n
e
u
ra
l
n
e
two
r
k
(S
RNN
)
a
n
d
b
i
d
irec
ti
o
n
a
l
lo
n
g
s
h
o
rt
-
term
m
e
m
o
ry
(
b
iL
S
T
M
)
is
p
re
se
n
ted
fo
r
a
re
li
a
b
le
sta
t
e
o
f
h
e
a
lt
h
(S
o
H)
e
stim
a
te.
Th
is
m
o
d
e
l
fi
n
d
s
su
b
tl
e
p
a
tt
e
rn
s
in
b
a
tt
e
r
y
d
a
ta
u
si
n
g
S
RNN
lay
e
rs
to
c
a
p
t
u
re
se
q
u
e
n
t
ial
d
e
p
e
n
d
e
n
c
ies
a
n
d
b
iL
S
TM
m
o
d
u
les
to
so
lv
e
lo
n
g
-
term
tem
p
o
ra
l
c
o
rre
latio
n
s
wh
il
e
a
v
o
id
in
g
v
a
n
is
h
in
g
g
ra
d
ie
n
t
c
o
n
c
e
rn
s.
Th
e
e
ffe
c
ti
v
e
n
e
ss
o
f
m
o
d
e
l
is
a
ss
e
ss
e
d
b
y
p
e
rfo
rm
a
n
c
e
m
e
a
su
re
s
su
c
h
a
s
ro
o
t
m
e
a
n
sq
u
a
re
e
rr
o
r
(RM
S
E),
m
e
a
n
a
b
so
lu
te
e
rro
r
(M
AE)
,
a
n
d
m
a
x
imu
m
e
rro
r
(M
AX
),
wh
ich
d
e
m
o
n
stra
te
it
s
su
p
e
rio
rit
y
fo
r
p
re
c
ise
S
o
H
e
stim
a
ti
o
n
.
Th
e
sta
c
k
e
d
RNN
-
b
a
se
d
S
o
H
e
stim
a
ti
o
n
a
c
h
ie
v
e
s
su
p
e
ri
o
r
a
c
c
u
r
a
c
y
,
with
RM
S
E,
M
AE,
a
n
d
M
AX
e
rr
o
r
lev
e
ls
o
f
1
.
5
%
,
0
.
8
%
,
a
n
d
4
.
8
4
%
,
re
sp
e
c
ti
v
e
ly
,
c
o
m
p
a
re
d
to
G
RU
’s
h
ig
h
e
r
e
rro
rs
(
3
.
8
%
,
3
%
,
a
n
d
5
.
5
%
).
S
tac
k
e
d
RNN
h
iera
rc
h
ica
ll
y
p
ro
c
e
ss
e
s
se
q
u
e
n
ti
a
l
b
a
tt
e
ry
d
a
ta,
e
ffe
c
ti
v
e
ly
c
a
p
tu
rin
g
c
o
m
p
lex
tem
p
o
ra
l
re
lati
o
n
sh
i
p
s,
a
n
d
e
n
su
ri
n
g
a
c
c
u
ra
te
a
n
d
re
li
a
b
le
S
o
H es
ti
m
a
ti
o
n
fo
r
LIBs.
K
ey
w
o
r
d
s
:
Hy
b
r
id
alg
o
r
ith
m
L
ith
iu
m
-
io
n
b
atter
ies
Natio
n
al
R
en
ewa
b
le
E
n
er
g
y
L
ab
o
r
ato
r
y
Po
lar
izin
g
r
esis
tan
ce
R
o
o
t m
ea
n
s
q
u
ar
e
e
r
r
o
r
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
R
ajesh
Ku
m
ar
Pra
k
h
y
a
Dep
ar
tm
en
t o
f
E
lectr
ical
E
n
g
i
n
ee
r
in
g
,
Ga
n
d
h
i
I
n
s
titu
te
o
f
T
ec
h
n
o
lo
g
y
an
d
Ma
n
ag
e
m
en
t (
GI
T
AM
)
Hy
d
er
ab
ad
5
0
2
3
2
9
,
I
n
d
ia
E
m
ail: r
ajee
ec
v
r
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
o
c
o
m
b
a
t
c
l
im
a
t
e
c
h
a
n
g
e
a
n
d
ac
h
i
ev
e
n
e
t
-
z
er
o
o
b
j
e
c
t
iv
e
s
,
a
r
o
u
n
d
th
e
w
o
r
l
d
a
r
e
e
n
a
c
t
in
g
to
u
g
h
er
e
m
i
s
s
i
o
n
s
r
e
s
t
r
i
c
t
i
o
n
s
,
c
a
r
b
o
n
p
r
i
c
i
n
g
,
g
r
e
e
n
i
n
f
r
a
s
t
r
u
c
t
u
r
e
ex
p
en
d
i
tu
r
e
s
,
r
en
e
w
ab
l
e
en
e
r
g
y
ta
r
g
e
t
s
,
an
d
e
n
c
o
u
r
ag
i
n
g
en
v
ir
o
n
m
en
t
a
l
l
y
c
o
n
s
c
io
u
s
b
e
h
av
i
o
r
s
[
1
]
-
[
4
]
.
E
f
f
o
r
t
s
t
o
e
l
e
c
t
r
if
y
in
d
u
s
t
r
ie
s
t
h
a
t
d
ep
en
d
o
n
f
o
s
s
i
l
f
u
e
l
s
,
s
u
ch
a
s
t
r
a
n
s
p
o
r
ta
t
i
o
n
,
e
m
p
h
a
s
i
z
e
t
h
e
u
s
e
o
f
g
r
e
e
n
te
c
h
n
o
lo
g
y
,
E
V
s
,
e
n
e
r
g
y
s
t
o
r
ag
e
s
y
s
t
e
m
s
,
a
n
d
r
e
n
e
wa
b
l
e
en
er
g
y
f
o
r
l
o
w
-
c
a
r
b
o
n
,
s
u
s
t
a
in
a
b
le
i
n
d
u
s
t
r
i
al
o
p
er
a
t
i
o
n
s
g
lo
b
a
l
ly
[
5
]
-
[
1
0
]
.
A
d
v
an
c
e
d
e
n
er
g
y
s
t
o
r
a
g
e
s
y
s
t
e
m
s
ar
e
r
eq
u
ir
ed
t
o
ac
c
o
m
m
o
d
a
t
e
th
e
r
i
s
i
n
g
d
em
a
n
d
f
o
r
r
e
n
e
w
a
b
l
e
e
n
e
r
g
y
,
en
h
an
c
e
g
r
id
s
t
a
b
i
l
i
t
y
,
p
er
m
i
t
r
e
a
l
-
t
i
m
e
a
p
p
l
i
c
a
t
i
o
n
s
,
r
e
d
u
c
e
c
a
r
b
o
n
em
i
s
s
i
o
n
s
,
an
d
b
o
o
s
t
e
f
f
i
c
i
en
c
y
a
l
l
o
f
w
h
ic
h
a
r
e
i
m
p
o
r
t
a
n
t
f
o
r
t
h
e
ef
f
e
c
t
iv
e
i
n
c
o
r
p
o
r
a
t
i
o
n
o
f
c
le
a
n
en
e
r
g
y
s
o
u
r
c
e
s
[
1
1
]
.
T
h
e
in
d
u
s
t
r
y
i
s
le
d
b
y
l
i
th
i
u
m
-
io
n
b
a
t
t
e
r
i
e
s
(
L
I
B
s
)
b
e
c
au
s
e
o
f
t
h
e
i
r
o
u
t
s
t
a
n
d
i
n
g
p
er
f
o
r
m
an
c
e
,
q
u
ic
k
te
c
h
n
i
c
a
l
d
ev
e
l
o
p
m
en
t
,
an
d
h
ig
h
e
f
f
i
c
i
en
cy
f
o
r
a
v
a
r
i
e
ty
o
f
u
s
es
[
1
2
]
-
[
1
5
]
.
S
t
a
t
e
o
f
ch
a
r
g
e
(
S
o
C
)
an
d
s
t
a
t
e
o
f
h
e
a
l
t
h
(
S
o
H
)
p
r
e
d
i
ct
i
o
n
s
a
r
e
i
m
p
r
o
v
ed
w
h
en
f
ib
e
r
B
r
ag
g
g
r
a
t
in
g
(
F
B
G
)
s
en
s
o
r
s
a
r
e
p
a
ir
e
d
w
i
th
d
e
ep
n
eu
r
a
l
n
e
t
wo
r
k
s
(
D
N
N
s
)
a
n
d
lo
n
g
s
h
o
r
t
-
t
er
m
m
e
m
o
r
y
(
L
S
T
M)
m
o
d
e
l
s
.
T
o
lo
w
e
r
m
i
s
t
a
k
e
s
a
n
d
b
o
o
s
t
d
e
p
e
n
d
a
b
i
l
i
ty
,
a
h
y
b
r
i
d
m
ac
h
in
e
l
e
ar
n
in
g
f
r
am
e
w
o
r
k
c
o
m
b
i
n
e
s
G
a
u
s
s
i
a
n
p
r
o
c
e
s
s
r
eg
r
e
s
s
i
o
n
w
i
t
h
co
n
v
o
lu
t
i
o
n
a
l
n
e
u
r
a
l
n
et
w
o
r
k
s
(
C
N
N
s
)
[
1
6
]
.
L
S
T
M
a
n
d
F
e
ed
f
o
r
w
a
r
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
A
cc
u
r
a
te
s
ta
te
o
f h
ea
lth
esti
ma
tio
n
u
s
in
g
h
yb
r
id
a
lg
o
r
ith
m
fo
r
elec
tr
ic
ve
h
icle
…
(
R
a
jesh
K
u
ma
r
P
r
a
kh
ya
)
1439
n
e
u
r
a
l
n
e
t
w
o
r
k
s
(
F
N
N
)
ar
e
tw
o
e
x
a
m
p
le
s
o
f
m
a
ch
i
n
e
l
e
ar
n
i
n
g
m
o
d
e
l
s
u
s
e
d
in
p
r
o
g
n
o
s
t
i
c
s
t
o
e
s
t
i
m
a
te
t
h
e
S
o
H
o
f
L
I
B
s
.
O
v
e
r
f
i
f
t
y
c
y
c
le
s
,
t
h
e
m
o
d
e
l
s
h
o
w
e
d
a
6
%
er
r
o
r
r
a
t
e
,
in
d
ic
a
t
i
n
g
th
e
p
o
s
s
i
b
i
l
i
ty
o
f
a
p
r
e
c
i
s
e
S
o
H
e
s
t
i
m
a
t
i
o
n
.
A
n
e
w
p
r
e
p
r
o
c
e
s
s
i
n
g
te
c
h
n
i
q
u
e
b
a
s
ed
o
n
So
C
i
s
a
l
s
o
ad
v
an
t
a
g
e
o
u
s
f
o
r
th
e
u
s
a
g
e
o
f
s
i
m
p
le
r
m
o
d
e
l
s
,
i
n
c
lu
d
in
g
f
e
e
d
f
o
r
w
a
r
d
n
eu
r
a
l
n
e
t
w
o
r
k
s
(
F
N
N
s
)
[
1
7
]
-
[
2
0
]
.
P
ar
t
i
c
u
la
r
ly
w
h
en
d
ea
l
i
n
g
w
i
th
l
i
m
i
t
ed
d
a
t
a
s
e
t
s
,
t
h
i
s
s
t
r
a
t
eg
y
i
m
p
r
o
v
e
s
t
h
e
p
e
r
f
o
r
m
an
c
e
o
f
So
H
p
r
e
d
i
c
t
io
n
s
a
n
d
o
u
t
p
er
f
o
r
m
s
co
n
v
e
n
t
io
n
a
l
t
i
m
e
-
d
o
m
a
i
n
m
e
t
h
o
d
s
,
d
em
o
n
s
t
r
at
i
n
g
i
t
s
u
s
e
f
u
l
n
e
s
s
in
p
r
a
c
ti
c
a
l
a
p
p
l
i
c
a
t
io
n
s
.
D
a
t
a
-
d
r
iv
en
a
p
p
r
o
a
ch
e
s
f
o
r
e
s
t
i
m
a
t
i
n
g
So
H
o
f
L
I
B
s
o
f
te
n
l
e
v
er
ag
e
a
l
g
o
r
i
th
m
s
l
i
k
e
K
-
n
e
ar
e
s
t
n
e
ig
h
b
o
r
s
(
K
N
N
)
t
o
p
r
o
c
e
s
s
p
ar
t
i
a
l
c
h
a
r
g
e
-
d
i
s
c
h
ar
g
e
cu
r
r
e
n
t
s
e
q
u
e
n
ce
s
[
2
1
]
.
T
h
e
s
e
t
e
c
h
n
i
q
u
es
e
n
ab
l
e
r
a
p
id
l
ea
r
n
in
g
an
d
h
i
g
h
g
en
e
r
a
l
iz
a
t
i
o
n
,
a
s
d
e
m
o
n
s
tr
a
t
e
d
u
s
i
n
g
an
o
f
f
i
c
i
a
l
d
a
t
a
s
e
t
.
co
m
b
i
n
in
g
c
o
n
v
o
l
u
t
i
o
n
a
l
n
e
u
r
a
l
n
e
t
wo
r
k
s
(
C
N
N
)
w
i
t
h
L
S
T
M
n
e
t
w
o
r
k
s
en
h
a
n
c
e
s
t
h
e
a
c
cu
r
a
c
y
o
f
S
o
H
a
s
s
e
s
s
m
e
n
t
s
an
d
i
m
p
r
o
v
e
s
p
r
ed
i
c
t
i
o
n
s
f
o
r
r
em
a
i
n
in
g
u
s
e
f
u
l
l
if
e
(
R
U
L
)
[
2
2
]
.
T
h
e
s
e
m
o
d
e
l
s
i
m
p
r
o
v
e
th
e
p
r
e
c
i
s
i
o
n
o
f
S
o
H
f
o
r
e
c
a
s
t
s
b
y
an
a
l
y
z
in
g
i
n
tr
i
c
a
t
e
d
e
t
er
i
o
r
a
t
i
o
n
p
a
t
te
r
n
s
.
O
n
e
o
f
t
h
e
m
o
s
t
im
p
o
r
t
an
t
t
as
k
s
f
o
r
im
p
r
o
v
i
n
g
b
a
t
t
er
y
m
an
a
g
em
e
n
t
i
s
e
s
t
im
a
t
i
n
g
So
H
o
f
L
I
B
s
.
Ac
c
o
r
d
in
g
t
o
r
e
c
e
n
t
r
e
s
e
a
r
ch
,
h
y
b
r
i
d
a
p
p
r
o
a
c
h
e
s
s
u
ch
a
s
t
h
e
C
N
N
-
L
S
T
M
m
o
d
e
l
p
er
f
o
r
m
b
e
t
t
e
r
in
f
e
a
t
u
r
e
e
x
tr
a
c
t
i
o
n
t
h
a
n
m
o
r
e
co
n
v
en
t
i
o
n
a
l
m
e
th
o
d
s
l
i
k
e
K
-
m
e
a
n
s
c
lu
s
t
e
r
in
g
[
2
3
]
.
Fo
r
So
H
e
s
t
i
m
a
ti
o
n
,
s
e
v
e
r
a
l
m
ac
h
in
e
l
e
a
r
n
in
g
ap
p
r
o
a
ch
e
s
w
e
r
e
ex
a
m
i
n
ed
in
[
2
4
]
,
i
n
c
lu
d
in
g
r
an
d
o
m
f
o
r
e
s
t
,
s
u
p
p
o
r
t
v
ec
t
o
r
r
e
g
r
e
s
s
i
o
n
(
S
V
R
)
,
p
o
l
y
n
o
m
i
a
l
r
e
g
r
e
s
s
i
o
n
,
an
d
m
u
l
t
i
p
le
l
i
n
e
ar
r
eg
r
e
s
s
i
o
n
.
SV
R
,
w
h
i
c
h
u
s
ed
N
A
S
A
d
a
t
as
e
t
s
f
o
r
a
n
a
l
y
s
i
s
a
n
d
p
a
r
t
i
a
l
ch
a
r
g
i
n
g
t
i
m
e
s
f
o
r
f
ea
t
u
r
e
s
e
l
e
c
t
io
n
,
p
r
o
d
u
c
ed
th
e
b
e
s
t
r
e
s
u
l
t
s
o
u
t
o
f
a
l
l
o
f
t
h
em
.
T
o
i
n
c
r
e
a
s
e
S
o
H
a
c
c
u
r
a
c
y
,
a
w
av
e
l
e
t
t
r
an
s
f
o
r
m
-
b
a
s
ed
te
c
h
n
i
q
u
e
h
a
s
a
l
s
o
b
e
e
n
cr
e
a
t
ed
.
W
an
g
e
t
a
l
.
[
2
5
]
d
em
o
n
s
t
r
a
t
ed
th
e
u
s
e
o
f
L
S
T
M
n
e
t
wo
r
k
s
f
o
r
m
a
n
a
g
in
g
n
o
n
l
in
e
ar
d
a
t
a
r
e
l
a
t
e
d
to
v
o
l
t
a
g
e
a
n
d
t
em
p
e
r
a
t
u
r
e
c
h
an
g
e
s
,
s
i
g
n
i
f
i
ca
n
t
ly
i
m
p
r
o
v
in
g
a
c
c
u
r
a
c
y
to
9
8
.
9
2
%
.
T
h
is
p
er
f
o
r
m
an
ce
s
u
r
p
ass
ed
tr
ad
itio
n
al
n
o
r
m
aliza
tio
n
te
ch
n
iq
u
es.
L
STM
n
etwo
r
k
s
,
a
ty
p
e
o
f
r
ec
u
r
r
en
t
n
eu
r
al
n
etwo
r
k
(
R
NN)
,
ex
ce
l
i
n
ca
p
t
u
r
in
g
lo
n
g
-
te
r
m
d
e
p
en
d
e
n
cies
an
d
s
eq
u
en
ti
al
p
atter
n
s
in
tim
e
-
s
er
ies
d
ata.
T
h
eir
ab
ilit
y
to
m
o
d
el
co
m
p
lex
,
n
o
n
lin
ea
r
r
e
latio
n
s
h
ip
s
m
ak
es
th
em
p
a
r
ticu
lar
ly
ef
f
ec
tiv
e
in
d
y
n
am
ic
en
v
i
r
o
n
m
e
n
ts
,
s
u
ch
as
v
o
ltag
e
an
d
tem
p
er
atu
r
e
f
lu
ctu
atio
n
s
,
o
f
ten
s
ee
n
in
b
atter
y
m
an
ag
em
e
n
t
s
y
s
tem
s
an
d
en
e
r
g
y
co
n
v
er
s
io
n
s
y
s
tem
s
.
T
h
is
m
eth
o
d
o
f
f
e
r
s
m
o
r
e
r
o
b
u
s
t
p
r
ed
ic
tio
n
s
co
m
p
a
r
ed
to
co
n
v
en
tio
n
al
ap
p
r
o
ac
h
es,
wh
ich
m
ay
s
tr
u
g
g
le
with
n
o
n
li
n
ea
r
ity
.
T
h
e
So
H
o
f
L
I
B
s
ca
n
b
e
ac
cu
r
ately
p
r
ed
icted
u
s
in
g
h
y
b
r
id
s
tack
ed
R
NNs
an
d
L
STM
n
etwo
r
k
s
,
esp
ec
ially
in
th
eir
b
id
ir
ec
tio
n
al
v
er
s
io
n
.
Dee
p
er
lear
n
in
g
is
m
ad
e
p
o
s
s
ib
le
b
y
t
h
e
lay
er
ed
d
esig
n
,
wh
ic
h
ca
n
i
d
en
tify
in
tr
icate
c
o
r
r
elatio
n
s
i
n
b
atter
y
d
ata.
T
h
e
p
e
r
f
o
r
m
an
ce
an
d
s
af
ety
o
f
L
I
B
s
ar
e
im
p
ac
ted
b
y
te
m
p
er
atu
r
e
v
ar
iatio
n
s
,
o
v
er
ch
ar
g
in
g
,
an
d
o
v
er
-
d
is
ch
a
r
g
in
g
.
b
iLST
Ms
en
h
an
ce
SR
NNs
ab
ilit
y
to
p
r
o
ce
s
s
s
eq
u
en
tial
d
ata
b
y
ad
d
r
e
s
s
in
g
th
e
v
an
is
h
in
g
g
r
ad
ien
t
is
s
u
e,
wh
ic
h
is
ess
en
tial
f
o
r
m
a
n
ag
in
g
lo
n
g
-
ter
m
d
e
p
en
d
en
cies.
SR
NNs
d
is
co
v
er
p
atter
n
s
f
r
o
m
b
o
th
p
ast
an
d
f
u
tu
r
e
i
n
p
u
ts
.
B
y
m
o
d
ellin
g
n
o
n
lin
ea
r
,
d
y
n
am
ic
asp
ec
ts
o
f
b
atter
y
p
er
f
o
r
m
a
n
ce
,
SR
NN
ca
n
en
h
an
ce
So
H
p
r
ed
ictio
n
s
as
it
ca
n
ac
cu
r
ately
in
ter
p
r
et
tem
p
o
r
al
v
ar
iatio
n
s
in
b
atter
y
h
ea
lth
o
v
er
tim
e.
Fo
r
p
r
ec
is
e
L
I
B
s
So
H
esti
m
atio
n
,
th
e
m
ai
n
co
n
tr
ib
u
to
r
s
d
ev
elo
p
ed
a
h
y
b
r
id
SR
NN
-
b
iLST
M
m
o
d
el
t
h
at
p
er
f
o
r
m
s
b
etter
th
an
GR
U
in
R
M
SE,
MA
E
,
an
d
MA
X
er
r
o
r
s
an
d
ef
f
ec
tiv
ely
ca
p
tu
r
es
tem
p
o
r
al
d
ep
en
d
e
n
cies.
T
h
e
o
r
g
an
izatio
n
o
f
th
e
p
ap
er
is
o
u
tlin
ed
as
f
o
llo
ws:
T
h
e
ab
ilit
y
o
f
th
e
h
y
b
r
id
R
NN
an
d
b
iLST
M
n
etwo
r
k
to
f
o
r
ec
ast th
e
b
atter
y
'
s
So
H
is
e
x
am
in
ed
in
s
ec
tio
n
2
.
T
h
e
f
in
d
in
g
s
an
d
a
th
o
r
o
u
g
h
ex
am
in
ati
o
n
o
f
So
H
esti
m
ate
m
eth
o
d
s
ar
e
co
v
er
e
d
in
s
ec
tio
n
3
,
wh
ich
also
co
m
p
ar
es
v
ar
io
u
s
ap
p
r
o
ac
h
es
an
d
th
ei
r
p
r
a
ctica
lity
.
T
h
e
m
ain
co
n
clu
s
io
n
s
ar
e
f
in
ally
o
u
tlin
ed
in
s
ec
tio
n
4
,
wh
ich
h
ig
h
lig
h
t
s
th
e
n
ee
d
f
o
r
p
r
ec
is
e
So
H
esti
m
atio
n
f
o
r
b
atter
y
m
an
ag
em
en
t sy
s
tem
o
p
tim
izatio
n
.
2.
P
RO
P
O
SE
D
SRN
N
-
B
I
L
S
T
M
M
O
D
E
L
T
o
ef
f
icien
tly
esti
m
ate
So
H
o
f
L
iB
s
,
a
m
o
d
el
co
m
b
in
in
g
a
h
y
b
r
id
s
tack
ed
r
ec
u
r
r
en
t
n
eu
r
al
n
etwo
r
k
(
SR
NN)
an
d
b
id
ir
ec
tio
n
al
lo
n
g
s
h
o
r
t
-
ter
m
m
e
m
o
r
y
(
b
iLS
T
M)
n
etwo
r
k
s
h
as
b
ee
n
d
ev
e
lo
p
ed
.
T
h
is
m
eth
o
d
tack
les
th
e
in
tr
icate
an
d
n
o
n
li
n
ea
r
asp
ec
ts
o
f
b
atter
y
d
ata,
s
u
ch
as
te
m
p
er
atu
r
e
a
n
d
v
o
ltag
e
v
ar
iatio
n
s
,
wh
ich
h
av
e
s
ig
n
if
ican
t
ef
f
ec
ts
o
n
b
atter
y
p
er
f
o
r
m
an
ce
o
v
e
r
tim
e.
T
h
e
m
o
d
el
ca
n
lear
n
f
r
o
m
p
r
ev
io
u
s
b
atter
y
p
er
f
o
r
m
an
ce
an
d
m
ak
e
p
r
ec
is
e
p
r
ed
ictio
n
s
ab
o
u
t
f
u
tu
r
e
s
tat
es
b
ec
au
s
e
o
f
th
e
R
NN
co
m
p
o
n
en
t'
s
ex
ce
p
tio
n
al
ab
ilit
y
to
d
is
ce
r
n
tem
p
o
r
al
co
r
r
elatio
n
s
f
r
o
m
s
eq
u
e
n
tial
d
ata.
L
o
n
g
-
ter
m
d
ep
e
n
d
en
cies,
h
o
wev
er
,
ar
e
f
r
eq
u
e
n
tly
p
r
o
b
lem
atic
f
o
r
o
r
d
in
ar
y
R
NNs
b
ec
au
s
e
o
f
p
r
o
b
lem
s
lik
e
v
an
is
h
in
g
g
r
ad
ie
n
ts
.
T
h
is
r
estrictio
n
is
less
en
ed
with
th
e
in
tr
o
d
u
ctio
n
o
f
th
e
b
iLST
M
n
etwo
r
k
,
wh
i
ch
d
o
es
b
o
t
h
f
o
r
war
d
an
d
b
ac
k
war
d
d
ata
an
al
y
s
is
.
B
y
u
s
in
g
a
two
-
wa
y
ap
p
r
o
ac
h
,
th
e
m
o
d
el
is
b
etter
a
b
le
to
id
e
n
tify
s
u
b
tle
p
atter
n
s
an
d
co
r
r
e
latio
n
s
in
th
e
d
ata.
Utilizin
g
th
e
b
id
ir
ec
tio
n
al
n
at
u
r
e
allo
ws
th
e
n
etwo
r
k
to
h
a
v
e
a
m
o
r
e
co
m
p
r
eh
e
n
s
iv
e
u
n
d
er
s
tan
d
in
g
o
f
th
e
tem
p
o
r
al
lin
k
ag
es
th
at
ar
e
p
r
e
s
en
t,
wh
ich
is
e
s
s
en
tial
f
o
r
an
ac
cu
r
ate
esti
m
ate
o
f
So
H.
T
h
e
in
co
r
p
o
r
atio
n
o
f
b
iLST
M
in
to
th
e
h
y
b
r
id
s
tack
ed
R
NN
m
o
d
el
f
ac
ilit
ates
lo
n
g
-
ter
m
m
e
m
o
r
y
p
r
eser
v
atio
n
,
wh
ich
is
cr
u
cial
f
o
r
ac
cu
r
ately
esti
m
atin
g
th
e
b
atter
y
'
s
o
v
er
all
h
ea
lth
an
d
r
em
ain
in
g
u
s
ab
le
life
.
T
h
is
m
eth
o
d
h
a
n
d
les
th
e
d
y
n
am
ic
an
d
n
o
n
lin
ea
r
b
eh
av
io
r
o
f
L
iB
s
,
r
esu
ltin
g
in
m
o
r
e
r
eliab
le
an
d
ac
cu
r
ate
So
H
ev
al
u
atio
n
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
3
,
Sep
tem
b
er
20
25
:
1438
-
1
4
4
5
1440
T
o
en
s
u
r
e
th
at
t
h
e
m
o
d
el
ca
n
m
an
ag
e
th
e
co
m
p
lex
ities
o
f
b
atter
y
d
ata
wh
ile
g
en
er
ati
n
g
p
r
ec
is
e
p
r
ed
ictio
n
s
o
n
th
e
b
atter
y
'
s
p
er
f
o
r
m
a
n
ce
an
d
h
ea
lth
,
R
NN
an
d
b
iLST
M
n
etwo
r
k
s
ar
e
co
m
b
in
ed
as
s
h
o
wn
in
Fig
u
r
e
1
.
T
h
e
ass
ess
m
en
t
o
f
th
e
s
tate
o
f
h
ea
lth
(
So
H)
o
f
L
iB
s
h
as
ad
v
an
ce
d
s
ig
n
if
ican
tl
y
u
s
in
g
th
e
h
y
b
r
id
s
tack
ed
R
NN
an
d
b
iLST
M
n
et
wo
r
k
m
o
d
el,
wh
ich
m
a
k
es u
s
e
o
f
s
tate
-
of
-
th
e
-
ar
t d
ee
p
lear
n
i
n
g
tech
n
iq
u
es.
T
h
e
tem
p
o
r
al
d
ep
en
d
en
cies
a
n
d
l
o
n
g
-
r
a
n
g
e
co
r
r
elatio
n
s
in
clu
d
ed
in
b
atter
y
p
e
r
f
o
r
m
an
ce
d
ata
ar
e
e
f
f
icien
tly
ca
p
tu
r
ed
b
y
th
is
ap
p
r
o
ac
h
,
i
m
p
r
o
v
i
n
g
p
r
ed
ictio
n
ac
cu
r
ac
y
.
T
h
e
m
o
d
el'
s
in
p
u
t
p
ar
am
e
ter
s
,
wh
ich
in
clu
d
e
tem
p
er
atu
r
e,
v
o
ltag
e,
an
d
cu
r
r
en
t,
ar
e
im
p
o
r
tan
t
m
ar
k
e
r
s
o
f
a
b
atter
y
'
s
co
n
d
itio
n
.
T
h
e
s
tack
ed
R
NN
lay
er
s
p
r
o
ce
s
s
th
ese
p
ar
am
eter
s
,
ex
t
r
ac
tin
g
s
eq
u
e
n
tial
f
ea
tu
r
es,
a
n
d
th
e
b
iLST
M
lay
er
e
x
am
in
e
s
th
ese
in
p
u
ts
b
o
t
h
f
o
r
war
d
an
d
b
ac
k
war
d
.
T
o
p
r
o
d
u
ce
m
o
r
e
ac
cu
r
ate
So
H
p
r
e
d
ictio
n
s
,
th
e
m
o
d
el
m
u
s
t
co
m
p
letely
co
m
p
r
eh
e
n
d
th
e
lin
k
s
b
etwe
en
p
r
ev
io
u
s
an
d
f
u
t
u
r
e
b
atter
y
s
tates,
wh
ich
is
en
s
u
r
ed
b
y
th
is
b
id
ir
ec
tio
n
al
p
r
o
ce
s
s
in
g
.
T
h
e
h
y
b
r
id
s
tack
ed
R
NN
an
d
b
iLST
M
m
eth
o
d
o
lo
g
y
p
r
o
v
id
es
a
m
o
r
e
r
eliab
le
s
o
lu
tio
n
th
an
s
tan
d
ar
d
tech
n
i
q
u
es,
wh
ich
f
r
eq
u
en
tly
f
in
d
it
d
if
f
i
cu
lt
to
m
an
a
g
e
th
e
i
n
tr
icate
a
n
d
n
o
n
lin
ea
r
b
eh
av
i
o
r
o
f
L
iB
s
.
T
h
e
m
o
d
el
m
ay
b
etter
m
an
ag
e
th
e
co
m
p
lex
d
y
n
am
ics
o
f
b
atter
y
p
er
f
o
r
m
an
ce
b
y
u
tili
zin
g
b
iLST
M
c
ap
ac
ity
to
ca
p
tu
r
e
b
id
ir
ec
tio
n
al
tem
p
o
r
al
p
atter
n
s
an
d
m
ain
tain
lo
n
g
-
ter
m
r
elati
o
n
s
h
ip
s
.
C
o
n
s
eq
u
en
tly
,
th
is
tech
n
iq
u
e
im
p
r
o
v
es
th
e
ac
cu
r
ac
y
o
f
S
o
H
f
o
r
ec
asts
b
y
o
f
f
e
r
in
g
m
o
r
e
ac
cu
r
ate
ass
es
s
m
en
ts
o
f
a
b
atter
y
'
s
h
ea
lth
co
n
d
itio
n
.
Pre
d
ictiv
e
m
ain
ten
an
ce
ap
p
licatio
n
s
an
d
r
ea
l
-
tim
e
b
atter
y
m
o
n
ito
r
in
g
ar
e
id
ea
l
u
s
es
f
o
r
th
e
s
u
g
g
ested
a
r
ch
itectu
r
e.
I
t
is
p
er
f
ec
t
f
o
r
o
n
g
o
i
n
g
b
atter
y
h
ea
lth
m
o
n
ito
r
in
g
d
u
e
to
its
ca
p
ac
ity
to
h
an
d
le
s
eq
u
en
tial
d
ata
an
d
co
n
s
id
er
b
id
ir
ec
tio
n
al
tem
p
o
r
al
tr
e
n
d
s
.
I
n
ad
d
itio
n
to
in
cr
ea
s
in
g
th
e
So
H
esti
m
atio
n
'
s
ac
cu
r
ac
y
,
th
e
u
s
e
o
f
th
is
m
o
d
el
h
elp
s
L
i
-
io
n
b
atter
ies
last
lo
n
g
er
a
n
d
b
e
s
af
er
b
y
f
ac
ilit
atin
g
p
r
o
ac
tiv
e
m
a
n
a
g
em
en
t a
n
d
p
r
o
m
p
t r
e
p
air
.
Fig
u
r
e
1
.
Ar
c
h
itectu
r
e
o
f
p
r
o
p
o
s
ed
SR
NN
-
b
iLST
M
n
etwo
r
k
3.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
T
h
e
s
tack
ed
R
NN
-
b
iLST
M
m
o
d
el
h
as
d
em
o
n
s
tr
ated
s
ig
n
if
ican
t
im
p
r
o
v
em
e
n
ts
in
So
H
p
r
e
d
ictio
n
ac
cu
r
ac
y
w
h
en
c
o
m
p
ar
e
d
to
co
n
v
en
tio
n
al
tech
n
iq
u
es
s
u
ch
as
GR
U
n
etwo
r
k
s
in
MA
T
L
AB
s
im
u
latio
n
s
.
I
n
ad
d
itio
n
to
l
o
wer
in
g
e
r
r
o
r
r
at
es
in
So
H
esti
m
atio
n
s
,
th
e
b
id
ir
ec
tio
n
al
n
atu
r
e
o
f
th
e
b
iLS
T
M
in
co
n
ju
n
ctio
n
with
s
tack
ed
R
NN
lay
er
s
allo
ws
f
o
r
en
h
an
ce
d
an
aly
s
is
o
f
d
y
n
am
ic
b
atter
y
d
ata,
in
clu
d
i
n
g
v
o
ltag
e
,
cu
r
r
e
n
t,
an
d
tem
p
e
r
atu
r
e.
T
h
e
r
esu
lts
o
f
t
h
ese
s
im
u
latio
n
s
in
d
icat
e
th
at
th
e
h
y
b
r
id
m
o
d
el
is
h
ig
h
ly
ac
c
u
r
ate
i
n
f
o
r
ec
asti
n
g
ca
p
ac
ity
d
eter
io
r
at
io
n
,
ch
a
r
g
e/d
is
ch
ar
g
e
b
eh
a
v
io
r
,
an
d
b
atter
y
life
.
T
h
is
m
o
d
e
l
ca
n
b
e
s
im
u
lated
with
MA
T
L
AB
/Si
m
u
lin
k
,
wh
ich
m
ak
es
it
s
im
p
le
to
i
n
teg
r
a
te
d
ee
p
lear
n
in
g
m
eth
o
d
s
a
n
d
ev
alu
ate
d
if
f
er
en
t
h
y
p
er
p
ar
am
eter
s
.
T
h
e
b
atter
y
m
an
ag
e
m
en
t
s
y
s
tem
(
B
MS)
an
d
Natio
n
al
R
en
ewa
b
le
E
n
er
g
y
L
ab
o
r
ato
r
y
(
NR
E
L
)
d
atasets
ar
e
f
r
eq
u
e
n
tly
u
tili
ze
d
f
o
r
So
H
esti
m
ate
ass
ig
n
m
en
ts
b
ec
au
s
e
th
ey
in
clu
d
e
r
ea
l
-
wo
r
ld
b
atter
y
d
ata
th
at
d
ep
ict
a
r
a
n
g
e
o
f
o
p
er
atin
g
s
itu
atio
n
s
an
d
d
eg
r
ad
atio
n
s
ce
n
a
r
io
s
.
3
.
1
.
T
ra
ini
ng
s
y
s
t
em
T
h
e
So
H
o
f
a
L
I
B
s
tead
ily
d
e
clin
es
as
th
e
n
u
m
b
e
r
o
f
cy
cles
r
is
es.
C
h
an
g
es
in
th
e
ch
e
m
ical
m
ak
eu
p
o
f
th
e
elec
tr
o
d
es,
elev
ated
in
t
er
n
al
r
esis
tan
ce
,
an
d
b
atter
y
c
ap
ac
ity
d
eter
io
r
atio
n
ar
e
th
e
m
ain
ca
u
s
es
o
f
th
is
r
ed
u
ctio
n
.
B
atter
y
wea
r
o
cc
u
r
s
with
ev
e
r
y
c
y
cle
o
f
ch
ar
g
in
g
an
d
d
is
ch
ar
g
in
g
,
w
h
ich
l
o
wer
s
th
e
b
atter
y
'
s
ca
p
ac
ity
to
r
etain
c
h
ar
g
e
a
n
d
o
v
er
all
ef
f
icien
c
y
.
Sh
o
r
ter
b
att
er
y
life
,
s
lo
wer
ch
a
r
g
in
g
,
an
d
lo
wer
o
u
tp
u
t
p
o
wer
ar
e
th
er
ef
o
r
e
all
s
h
o
wn
b
y
t
h
e
So
H
esti
m
ate,
wh
ich
s
h
o
ws
a
p
r
o
g
r
ess
iv
e
d
eter
io
r
atio
n
in
th
e
b
atter
y
'
s
p
er
f
o
r
m
an
ce
o
v
er
tim
e.
I
n
th
e
GR
U
n
etwo
r
k
,
th
e
So
H
esti
m
atio
n
f
o
r
th
e
W
I
STAR
-
H
-
PHS0
4
b
atter
y
p
ac
k
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
A
cc
u
r
a
te
s
ta
te
o
f h
ea
lth
esti
ma
tio
n
u
s
in
g
h
yb
r
id
a
lg
o
r
ith
m
fo
r
elec
tr
ic
ve
h
icle
…
(
R
a
jesh
K
u
ma
r
P
r
a
kh
ya
)
1441
ce
lls
d
ec
r
ea
s
es f
r
o
m
9
3
% to
6
8
% a
s
th
e
n
u
m
b
er
o
f
cy
cles r
i
s
es.
T
h
e
lo
w
ca
p
ac
ity
o
f
th
e
Gate
d
R
ec
u
r
r
en
t U
n
it
(
GR
U)
to
ca
p
tu
r
e
d
e
p
en
d
e
n
cie
s
tim
e
ca
n
b
e
a
d
r
awb
ac
k
.
As
th
e
b
atter
y
g
o
es
th
r
o
u
g
h
m
o
r
e
cy
cles,
th
e
esti
m
atio
n
a
cc
u
r
ac
y
d
ec
r
ea
s
es
b
ec
au
s
e
GR
U
is
n
o
t
as
g
o
o
d
at
id
e
n
tify
in
g
lo
n
g
-
r
an
g
e
co
r
r
elatio
n
s
in
b
atter
y
d
ata
as
it
is
at
id
en
tify
in
g
s
h
o
r
t
-
ter
m
tr
en
d
s
.
As
a
r
esu
lt,
o
v
er
all
p
er
f
o
r
m
an
ce
ca
n
s
u
f
f
e
r
f
r
o
m
in
ac
cu
r
ate
p
r
ed
ictio
n
s
ab
o
u
t
th
e
b
atter
y
'
s
co
n
d
itio
n
as
it
d
ev
elo
p
s
.
T
h
e
So
H
esti
m
atio
n
o
f
th
e
W
I
STAR
-
H
-
PHS0
4
b
atter
y
p
ac
k
ce
lls
in
r
esp
o
n
s
e
to
th
e
r
is
in
g
n
u
m
b
er
o
f
cy
cles,
as
s
ee
n
in
Fig
u
r
e
2
(
a)
,
s
h
o
ws
a
r
ed
u
cti
o
n
f
r
o
m
9
3
%
to
6
8
%
u
tili
zin
g
t
h
e
GR
U
n
etwo
r
k
.
C
o
m
p
ar
ed
t
o
m
o
r
e
co
m
p
lex
m
o
d
els
lik
e
L
STM
s
,
th
e
f
u
n
d
am
e
n
tal
d
is
ad
v
an
ta
g
e
o
f
th
e
GR
U
is
its
lim
ited
ca
p
ac
ity
to
ca
p
tu
r
e
lo
n
g
-
ter
m
r
elatio
n
s
h
i
p
s
.
L
o
n
g
-
ter
m
f
lu
ctu
atio
n
s
in
b
atter
y
d
ata
ca
n
p
r
o
v
e
d
if
f
icu
lt
f
o
r
GR
Us
to
lear
n
ac
r
o
s
s
m
an
y
c
y
cles,
d
esp
ite
th
eir
c
o
m
p
u
tatio
n
al
ef
f
icien
c
y
an
d
ea
s
e
o
f
tr
ain
in
g
.
As
a
r
esu
lt,
So
H
ca
lcu
latio
n
s
b
ec
o
m
e
less
ac
cu
r
ate
as
th
e
b
atter
y
d
ev
elo
p
s
an
d
ex
p
e
r
ie
n
ce
s
d
eter
io
r
atio
n
.
Similar
ly
,
th
e
s
tack
ed
SR
NN
-
b
iLST
M
n
etwo
r
k
h
as
b
ee
n
s
h
o
wn
in
Fig
u
r
e
2
(
b
)
to
m
in
im
i
ze
d
eg
r
a
d
atio
n
f
r
o
m
9
5
%
to
6
9
%
wh
en
co
m
p
ar
ed
to
th
e
GR
U
n
etwo
r
k
.
On
e
o
f
th
e
p
r
im
ar
y
ad
v
an
tag
e
s
o
f
SR
NN
-
b
iLST
M
o
v
er
GR
U
is
its
ab
il
ity
to
ca
p
tu
r
e
b
o
th
s
h
o
r
t
-
ter
m
an
d
lo
n
g
-
ter
m
d
ata
d
ep
e
n
d
en
cies.
T
h
e
s
tack
ed
R
NN
lay
er
s
b
o
o
s
t
th
e
m
o
d
el'
s
ca
p
ac
ity
to
r
ec
o
g
n
ize
s
u
b
tle
p
atter
n
s
in
b
atter
y
p
er
f
o
r
m
an
c
e
b
y
allo
win
g
it
to
co
m
p
r
eh
e
n
d
s
eq
u
en
tial
in
p
u
t
at
s
ev
er
al
le
v
els
o
f
ab
s
tr
ac
tio
n
.
T
h
e
m
o
d
el
is
b
etter
eq
u
i
p
p
ed
to
co
m
p
r
e
h
en
d
th
e
e
n
tire
tem
p
o
r
al
d
y
n
am
ics
o
f
th
e
b
atter
y
'
s
ac
tiv
ity
s
in
ce
th
e
b
iLST
M
co
m
p
o
n
e
n
t
o
f
f
e
r
s
b
id
ir
ec
tio
n
al
p
r
o
ce
s
s
in
g
,
wh
ich
en
ab
les
th
e
m
o
d
el
to
in
clu
d
e
b
o
th
p
ast
an
d
f
u
tu
r
e
d
ata.
T
h
is
is
esp
ec
ially
cr
u
cial
in
So
H
esti
m
atio
n
as
d
e
g
r
ad
atio
n
p
atter
n
s
ch
an
g
e
o
v
er
tim
e
an
d
h
is
to
r
ical
o
cc
u
r
r
e
n
ce
s
im
p
ac
t
f
u
tu
r
e
s
tates.
As
th
e
b
atter
y
ex
p
er
ien
ce
s
m
o
r
e
cy
cles,
GR
U
n
et
wo
r
k
s
,
d
esp
ite
th
eir
ef
f
icien
cy
,
s
tr
en
g
th
n
o
t b
e
ab
l
e
to
ca
p
tu
r
e
t
h
ese
co
m
p
lex
r
el
atio
n
s
h
ip
s
,
lead
in
g
to
d
ec
r
ea
s
e
d
ac
cu
r
ac
y
.
(
a)
(
b
)
Fig
u
r
e
2
.
So
H
(
%)
esti
m
atio
n
Vs cy
cle
life
f
o
r
(
a
)
GR
U
n
etwo
r
k
an
d
(
b
)
p
r
o
p
o
s
ed
R
NN
-
b
iLST
M
n
etwo
r
k
T
h
e
esti
m
atin
g
ca
p
ac
ity
o
f
G
R
U
-
b
ased
So
H
esti
m
atio
n
d
ec
r
ea
s
es
with
in
cr
ea
s
in
g
tem
p
er
atu
r
e;
f
o
r
a
tem
p
er
atu
r
e
in
cr
ea
s
e
o
f
0
.
0
0
5
°C
,
th
e
v
o
ltag
e
d
r
o
p
s
to
4
V
as
s
h
o
wn
in
Fig
u
r
e
3
(
a
)
.
T
h
e
s
u
g
g
ested
SR
NN
-
b
iLST
M
ap
p
r
o
ac
h
,
o
n
th
e
o
t
h
er
h
an
d
,
k
ee
p
s
v
o
ltag
e
lev
els
s
tead
y
at
4
.
2
V
as
d
ep
icted
in
Fig
u
r
e
3
(
b
)
d
u
r
in
g
So
H
esti
m
atio
n
.
T
h
e
SR
NN
-
b
iLST
M
h
as
an
ad
v
a
n
tag
e
o
v
er
GR
U
s
in
ce
it
is
ca
p
ab
le
o
f
u
n
d
er
s
tan
d
in
g
in
tr
icate
n
o
n
lin
ea
r
c
o
r
r
elatio
n
s
b
etwe
en
b
atter
y
p
ar
am
et
er
s
lik
e
tem
p
e
r
atu
r
e,
v
o
ltag
e,
an
d
cu
r
r
en
t.
B
y
p
r
o
ce
s
s
in
g
s
eq
u
en
tial
d
ata
at
m
an
y
ab
s
tr
ac
tio
n
lev
els,
th
e
s
t
ac
k
ed
R
NN
lay
er
s
im
p
r
o
v
e
th
e
ab
ilit
y
to
id
en
tify
m
in
u
te
tr
en
d
s
in
th
e
im
p
ac
t
o
f
tem
p
er
atu
r
e
o
n
b
atter
y
h
ea
lth
.
I
n
th
e
m
ea
n
w
h
ile,
th
e
b
iLST
M
n
etwo
r
k
ca
p
tu
r
es b
o
th
t
h
e
p
ast an
d
f
u
tu
r
e
b
atter
y
p
e
r
f
o
r
m
an
ce
s
tates b
y
an
aly
zin
g
b
id
ir
ec
tio
n
al
tem
p
o
r
al
r
elatio
n
s
h
ip
s
.
T
h
e
m
o
d
el
is
m
o
r
e
r
esil
ien
t
to
tem
p
er
atu
r
e
c
h
an
g
es
b
ec
au
s
e
o
f
th
is
two
-
p
r
o
n
g
ed
s
tr
ateg
y
,
wh
ich
also
k
ee
p
s
v
o
ltag
e
p
r
ed
ictio
n
f
r
o
m
d
eg
r
a
d
in
g
.
I
n
c
o
n
tr
ast,
GR
U
n
etwo
r
k
s
ar
e
less
ab
le
to
f
o
r
ec
ast
b
atter
y
p
er
f
o
r
m
an
ce
u
n
d
er
d
if
f
er
e
n
t h
ea
t settin
g
s
s
in
ce
th
ey
d
o
n
o
t h
av
e
b
id
ir
ec
ti
o
n
al
an
d
m
u
ltil
ay
er
ed
p
r
o
ce
s
s
in
g
ca
p
a
b
ilit
ies.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
3
,
Sep
tem
b
er
20
25
:
1438
-
1
4
4
5
1442
(
a)
(
b
)
Fig
u
r
e
3
.
E
f
f
ec
t o
f
tem
p
er
atu
r
e
f
o
r
(
a
)
GR
U
n
etwo
r
k
an
d
(
b
)
p
r
o
p
o
s
ed
SR
NN
-
b
iLST
M
n
etwo
r
k
3
.
2
.
Va
lid
a
t
i
o
n sy
s
t
em
T
h
e
v
a
l
i
d
a
t
i
o
n
m
e
c
h
a
n
i
s
m
a
s
s
u
r
e
s
S
o
H
e
s
t
i
m
a
t
e
a
c
c
u
r
a
c
y
b
y
t
e
s
t
i
n
g
m
o
d
e
l
s
a
g
a
i
n
s
t
p
r
e
v
i
o
u
s
l
y
u
n
k
n
o
w
n
d
a
t
a
a
n
d
d
e
m
o
n
s
t
r
a
t
i
n
g
d
e
p
e
n
d
a
b
i
l
i
t
y
u
n
d
e
r
a
v
a
r
i
e
t
y
o
f
o
p
e
r
a
t
i
o
n
a
l
s
i
t
u
a
t
i
o
n
s
.
F
i
g
u
r
e
4
(
a
)
i
l
l
u
s
t
r
a
t
e
s
t
h
a
t
t
h
e
G
R
U
n
e
t
w
o
r
k
h
a
s
a
c
o
n
s
i
d
e
r
a
b
l
e
g
a
p
b
e
t
w
e
e
n
t
h
e
p
r
e
f
e
r
r
e
d
a
n
d
r
e
f
e
r
e
n
c
e
S
o
H
e
s
t
i
m
a
t
e
l
e
v
e
l
s
,
r
e
s
u
l
t
i
n
g
i
n
h
i
g
h
e
r
r
o
r
v
a
l
u
e
s
.
T
h
i
s
i
s
d
u
e
t
o
G
R
U
n
e
t
w
o
r
k
s
'
s
h
o
r
t
c
o
m
i
n
g
s
,
w
h
i
c
h
i
n
c
l
u
d
e
a
n
i
n
a
b
i
l
i
t
y
t
o
e
f
f
i
c
i
e
n
t
l
y
c
a
p
t
u
r
e
l
o
n
g
-
r
a
n
g
e
r
e
l
a
t
i
o
n
s
h
i
p
s
a
n
d
s
u
b
t
l
e
n
o
n
l
i
n
e
a
r
p
a
t
t
e
r
n
s
i
n
b
a
t
t
e
r
y
d
a
t
a
.
G
R
U
s
,
w
h
i
l
e
c
o
m
p
u
t
a
t
i
o
n
a
l
l
y
e
f
f
i
c
i
e
n
t
,
h
a
v
e
d
i
f
f
i
c
u
l
t
y
d
e
a
l
i
n
g
w
i
t
h
c
o
m
p
l
i
c
a
t
e
d
t
e
m
p
o
r
a
l
l
i
n
k
a
g
e
s
a
n
d
d
y
n
a
m
i
c
b
e
h
a
v
i
o
r
s
,
r
e
s
u
l
t
i
n
g
i
n
e
r
r
o
n
e
o
u
s
S
o
H
e
s
t
i
m
a
t
i
o
n
s
.
T
h
i
s
i
n
a
c
c
u
r
a
c
y
h
a
s
a
n
i
m
p
a
c
t
o
n
t
h
e
b
a
t
t
e
r
y
s
y
s
t
e
m
'
s
d
e
p
e
n
d
a
b
i
l
i
t
y
a
n
d
c
a
u
s
e
s
m
o
r
e
i
n
a
c
c
u
r
a
c
i
e
s
a
c
r
o
s
s
c
e
l
l
s
u
n
d
e
r
v
a
r
i
o
u
s
o
p
e
r
a
t
i
o
n
a
l
c
o
n
d
i
t
i
o
n
s
.
I
n
c
o
n
t
r
a
s
t
,
t
h
e
p
r
o
p
o
s
e
d
S
R
N
N
-
b
i
L
S
T
M
n
e
t
w
o
r
k
,
a
s
s
h
o
w
n
i
n
F
i
g
u
r
e
4
(
b
)
,
s
i
g
n
i
f
i
c
a
n
t
l
y
r
e
d
u
c
e
s
t
h
e
s
e
e
r
r
o
r
s
w
h
i
l
e
e
n
s
u
r
i
n
g
c
o
r
r
e
c
t
S
o
H
e
s
t
i
m
a
t
i
o
n
.
T
h
e
S
R
N
N
l
a
y
e
r
s
i
m
p
r
o
v
e
t
h
e
m
o
d
e
l
'
s
a
b
i
l
i
t
y
t
o
i
n
t
e
r
p
r
e
t
s
e
q
u
e
n
t
i
a
l
i
n
p
u
t
b
y
e
x
t
r
a
c
t
i
n
g
m
u
l
t
i
-
l
e
v
e
l
f
e
a
t
u
r
e
s
,
w
h
e
r
e
a
s
t
h
e
b
i
L
S
T
M
d
o
e
s
b
i
d
i
r
e
c
t
i
o
n
a
l
a
n
a
l
y
s
i
s
,
c
a
p
t
u
r
i
n
g
p
a
s
t
a
n
d
f
u
t
u
r
e
t
e
m
p
o
r
a
l
t
r
e
n
d
s
.
T
h
is
h
y
b
r
id
d
esig
n
en
a
b
les
th
e
SR
N
N
-
b
iLST
M
to
b
etter
h
an
d
le
co
m
p
licated
an
d
n
o
n
lin
e
ar
b
atter
y
b
eh
av
io
r
th
a
n
th
e
GR
U,
r
esu
ltin
g
in
h
ig
h
er
So
H
esti
m
ate
ac
cu
r
ac
y
.
Acc
u
r
ate
So
H
f
o
r
ec
a
s
ts
in
cr
ea
s
e
b
atter
y
ef
f
icien
cy
,
d
ep
en
d
ab
ilit
y
,
a
n
d
o
p
e
r
atio
n
al
s
af
ety
,
m
ak
in
g
th
e
SR
NN
-
b
iLST
M
th
e
b
est
o
p
tio
n
f
o
r
b
atter
y
m
o
n
ito
r
in
g
an
d
p
r
ed
ictiv
e
m
a
in
ten
an
ce
.
T
h
e
er
r
o
r
m
etr
ics
f
o
r
GR
U
-
b
ased
So
H
esti
m
ati
o
n
in
d
icate
R
MSE
,
MA
E
,
an
d
MA
X
er
r
o
r
v
alu
es
o
f
3
.
8
%,
3
%,
an
d
5
.
5
%,
r
esp
e
ctiv
ely
,
wh
ich
ar
e
m
u
ch
g
r
ea
t
er
th
an
th
o
s
e
o
f
th
e
s
u
g
g
ested
SR
NN
-
b
iLST
M
-
b
ased
So
H
esti
m
atio
n
,
wh
ich
h
as
R
MSE
(
1
.
5
%),
MA
E
(
0
.
8
%),
a
n
d
MA
X
(
4
.
8
4
%).
T
h
is
im
p
r
o
v
em
en
t
is
attr
ib
u
ted
to
th
e
b
e
n
ef
its
o
f
t
h
e
p
r
o
p
o
s
ed
SR
NN
-
b
iLST
M
m
o
d
el.
T
h
e
s
tack
ed
R
NN
lay
er
s
ef
f
ec
tiv
ely
ex
tr
ac
t
h
ier
ar
ch
ical
f
ea
tu
r
es
f
r
o
m
co
n
s
ec
u
tiv
e
b
atter
y
d
ata,
allo
win
g
f
o
r
a
b
etter
co
m
p
r
eh
e
n
s
io
n
o
f
n
o
n
lin
ea
r
i
n
ter
ac
tio
n
s
.
Fu
r
t
h
er
m
o
r
e,
t
h
e
b
iLST
M
n
etwo
r
k
p
r
o
ce
s
s
es
in
p
u
t
in
b
o
th
f
o
r
war
d
an
d
b
ac
k
war
d
d
i
r
ec
tio
n
s
,
ca
tc
h
in
g
b
i
d
ir
ec
tio
n
al
tem
p
o
r
al
r
el
atio
n
s
h
ip
s
th
at
GR
U
n
etwo
r
k
s
f
ail
to
atten
d
.
T
h
is
d
u
al
p
r
o
ce
s
s
in
g
ca
p
ac
ity
p
r
o
v
id
es
a
n
e
n
h
an
ce
d
o
v
er
v
iew
o
f
th
e
b
atter
y
'
s
ac
tiv
ity
,
r
esu
ltin
g
i
n
h
ig
h
er
esti
m
atio
n
ac
cu
r
ac
y
.
T
h
e
h
y
b
r
id
SR
NN
-
b
iLST
M
ap
p
r
o
ac
h
is
also
m
o
r
e
e
f
f
ec
tiv
e
in
p
r
eser
v
in
g
lo
n
g
-
ter
m
d
ep
e
n
d
en
cies,
m
a
k
in
g
it
p
er
f
ec
t
f
o
r
d
ea
lin
g
with
th
e
c
o
m
p
lex
an
d
d
y
n
am
ic
n
at
u
r
e
o
f
L
I
B
s
.
T
h
e
SR
NN
-
b
iLST
M
m
o
d
el
s
ig
n
if
ican
tly
im
p
r
o
v
es
So
H
esti
m
atio
n
ac
cu
r
ac
y
,
r
ed
u
ci
n
g
R
MSE
(
1
.
5
%),
MA
E
(
0
.
8
%),
an
d
MA
X
(
4
.
8
4
%)
er
r
o
r
s
wh
ile
m
ain
tain
in
g
v
o
ltag
e
s
tab
ilit
y
an
d
ca
p
tu
r
i
n
g
lo
n
g
-
ter
m
d
ep
e
n
d
en
cies
b
etter
th
a
n
GR
U.
T
h
e
SR
NN
-
b
iLST
M
m
o
d
el
e
n
h
an
ce
s
So
H
esti
m
atio
n
ac
c
u
r
ac
y
b
y
ca
p
t
u
r
in
g
b
i
d
ir
ec
tio
n
al
tem
p
o
r
a
l
r
elatio
n
s
h
ip
s
,
m
itig
atin
g
GR
U
lim
itatio
n
s
,
an
d
m
ai
n
tain
in
g
s
tab
le
v
o
ltag
e
u
n
d
er
tem
p
e
r
atu
r
e
v
a
r
iatio
n
s
f
o
r
im
p
r
o
v
e
d
b
atter
y
r
eliab
ilit
y
.
As
a
co
n
s
eq
u
en
ce
,
it
ass
u
r
es
r
ed
u
ce
d
er
r
o
r
v
alu
es,
in
c
r
ea
s
in
g
th
e
r
eliab
ilit
y
a
n
d
ac
cu
r
ac
y
o
f
So
H
esti
m
atio
n
,
wh
ich
d
ir
ec
tly
lead
s
to
b
etter
b
atter
y
p
e
r
f
o
r
m
an
ce
a
n
d
s
af
et
y
.
T
ab
le
1
p
r
esen
ts
th
e
er
r
o
r
an
al
y
s
is
co
m
p
ar
in
g
GR
U
an
d
th
e
p
r
o
p
o
s
ed
SR
NN
-
b
iLST
M
alg
o
r
ith
m
s
,
h
ig
h
li
g
h
tin
g
th
e
s
u
p
e
r
io
r
ac
cu
r
ac
y
o
f
th
e
p
r
o
p
o
s
ed
SR
NN
-
b
iLST
M.
T
ab
le
1
.
E
r
r
o
r
a
n
aly
s
is
o
f
GR
U
an
d
p
r
o
p
o
s
ed
SR
NN
-
b
iLST
M
alg
o
r
ith
m
s
A
l
g
o
r
i
t
h
m
R
M
S
E
M
A
E
M
A
X
G
R
U
3
.
8
%
3%
5
.
5
%
P
r
o
p
o
se
d
S
R
N
N
-
b
i
LSTM
1
.
5
%
0
.
8
%
4
.
8
4
%
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
A
cc
u
r
a
te
s
ta
te
o
f h
ea
lth
esti
ma
tio
n
u
s
in
g
h
yb
r
id
a
lg
o
r
ith
m
fo
r
elec
tr
ic
ve
h
icle
…
(
R
a
jesh
K
u
ma
r
P
r
a
kh
ya
)
1443
Ce
ll
1
Ce
ll
2
Ce
ll
3
Ce
ll
4
Ce
ll
5
Ce
ll
6
(
a)
(
b
)
Fig
u
r
e
4
.
%S
o
H
an
d
%
e
r
r
o
r
o
f
c
ell
1
,
C
ell
2
,
C
ell
3
,
C
ell
4
,
C
ell
5
,
an
d
C
ell
6
f
o
r
(
a)
GR
U
an
d
(
b
)
p
r
o
p
o
s
ed
SR
NN
-
b
iLST
M
n
etwo
r
k
4.
CO
NCLU
SI
O
N
T
h
e
o
b
jectiv
e
o
f
th
e
r
esear
ch
is
to
cr
ea
te
a
u
n
iq
u
e
h
y
b
r
id
m
o
d
el
th
at
ca
n
g
en
e
r
ate
ac
c
u
r
ate
So
H
esti
m
atio
n
s
o
f
b
atter
ies
b
y
co
m
b
in
in
g
th
e
s
tr
en
g
th
s
o
f
s
tack
ed
R
NN
(
S
R
NN)
an
d
b
iLST
M
n
etwo
r
k
s
.
I
n
th
e
p
r
o
p
o
s
ed
SR
NN
-
b
iLST
M
tec
h
n
iq
u
e,
th
e
s
tack
e
d
R
NN
ca
p
tu
r
es
tem
p
o
r
al
d
e
p
en
d
e
n
cie
s
an
d
h
ier
ar
ch
ical
ch
ar
ac
ter
is
tics
f
r
o
m
s
eq
u
en
tial
d
ata,
wh
ile
th
e
b
iLST
M
n
etwo
r
k
r
eso
lv
es
b
o
th
lo
n
g
-
an
d
s
h
o
r
t
-
te
r
m
r
elatio
n
s
h
ip
s
b
y
p
r
o
ce
s
s
in
g
d
ata
b
i
-
d
ir
ec
tio
n
ally
.
T
h
is
h
y
b
r
id
co
n
s
tr
u
ctio
n
o
f
f
er
s
r
eliab
le
p
er
f
o
r
m
a
n
ce
wh
en
r
ec
o
r
d
in
g
th
e
co
m
p
licated
an
d
n
o
n
lin
ea
r
ch
ar
ac
te
r
is
tics
o
f
L
I
B
s
.
T
h
e
tr
ain
in
g
ap
p
r
o
ac
h
is
b
r
o
ad
,
c
o
n
s
is
tin
g
o
f
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
3
,
Sep
tem
b
er
20
25
:
1438
-
1
4
4
5
1444
b
o
th
tr
ain
in
g
an
d
v
alid
atio
n
s
ets.
T
h
e
tr
ain
in
g
s
et
im
p
r
o
v
es
th
e
m
o
d
el
i
n
lear
n
in
g
b
atter
y
d
ata
p
atter
n
s
a
n
d
o
p
tim
izin
g
n
etwo
r
k
p
a
r
am
eter
s
,
wh
ile
th
e
v
alid
atio
n
s
et
en
s
u
r
es
th
e
m
o
d
el
g
en
er
alize
s
ef
f
icien
tly
,
lo
wer
in
g
th
e
p
o
s
s
ib
ilit
y
o
f
o
v
er
f
itti
n
g
.
Af
ter
tr
ain
in
g
,
th
e
m
o
d
el'
s
p
e
r
f
o
r
m
a
n
ce
o
n
th
e
test
s
et
is
test
ed
u
s
in
g
s
ig
n
if
ican
t
m
etr
ic
s
s
u
ch
as
R
MSE
,
MA
E
,
an
d
MA
X
er
r
o
r
.
T
h
e
p
r
o
p
o
s
ed
SR
NN
-
b
iL
STM
n
etwo
r
k
ef
f
ec
tiv
ely
o
u
tp
er
f
o
r
m
s
s
tan
d
ar
d
ap
p
r
o
ac
h
es
in
So
H
esti
m
atio
n
,
with
lo
wer
er
r
o
r
v
alu
es
an
d
h
ig
h
er
p
r
e
d
ictio
n
ac
c
u
r
ac
y
.
T
h
is
f
r
am
ewo
r
k
n
o
t
o
n
ly
im
p
r
o
v
es
b
atter
y
m
o
n
i
to
r
in
g
,
b
u
t
also
ad
d
s
to
in
cr
ea
s
ed
b
atter
y
s
y
s
tem
ef
f
icien
cy
,
s
af
ety
,
an
d
d
ep
en
d
a
b
ilit
y
,
m
ak
in
g
it
an
e
f
f
ec
tiv
e
in
s
tr
u
m
en
t
f
o
r
r
ea
l
-
tim
e
ap
p
licatio
n
s
an
d
p
r
ed
ictiv
e
m
ain
ten
an
ce
.
T
h
e
GR
U
-
b
ased
So
H
esti
m
atio
n
h
as
R
MSE
,
MA
E
,
an
d
MA
X
er
r
o
r
lev
els
o
f
3
.
8
%,
3
%,
an
d
5
.
5
%,
r
esp
ec
tiv
ely
,
wh
er
ea
s
th
e
p
r
o
p
o
s
ed
SR
NN
-
b
iLST
M
h
as
m
u
ch
lo
wer
R
MSE
(
1
.
5
%),
MA
E
(
0
.
8
%),
an
d
MA
X
(
4
.
8
4
%).
T
h
e
SR
NN
-
b
iLST
M
i
s
p
r
ef
er
ab
le
b
ec
au
s
e
it
ca
n
h
an
d
le
s
eq
u
e
n
tial
b
atter
y
d
ata
h
ier
ar
c
h
ically
th
r
o
u
g
h
s
tack
e
d
R
NN
lay
er
s
wh
ile
also
ca
p
tu
r
in
g
b
id
i
r
ec
tio
n
al
tem
p
o
r
al
r
el
atio
n
s
h
ip
s
u
s
in
g
b
iLST
M.
T
h
i
s
allo
ws
th
e
m
o
d
el
to
h
an
d
le
co
m
p
licated
an
d
n
o
n
lin
ea
r
b
atter
y
ch
ar
ac
te
r
is
tics
m
o
r
e
e
f
f
icien
tly
,
r
esu
ltin
g
in
lo
wer
er
r
o
r
s
.
T
h
e
SR
NN
-
b
iLST
M
p
r
o
v
id
es
m
o
r
e
p
r
ec
is
e
an
d
d
ep
en
d
ab
l
e
So
H
esti
m
atio
n
,
wh
ich
im
p
r
o
v
es
b
atter
y
p
er
f
o
r
m
an
ce
,
e
f
f
icien
cy
,
an
d
s
af
ety
in
r
ea
l
-
tim
e
a
p
p
licatio
n
s
.
F
UNDING
I
NF
O
R
M
A
T
I
O
N
T
h
is
m
an
u
s
cr
ip
t d
o
es n
o
t h
a
v
e
an
y
f
u
n
d
in
g
in
f
o
r
m
atio
n
.
AUTHO
R
CO
NT
RI
B
UT
I
O
NS ST
A
T
E
M
E
N
T
T
h
is
jo
u
r
n
al
u
s
es
th
e
C
o
n
tr
ib
u
to
r
R
o
les
T
ax
o
n
o
m
y
(
C
R
ed
iT)
to
r
ec
o
g
n
ize
in
d
iv
id
u
al
au
th
o
r
co
n
tr
ib
u
tio
n
s
,
r
ed
u
ce
au
th
o
r
s
h
ip
d
is
p
u
tes,
an
d
f
ac
ilit
ate
co
llab
o
r
atio
n
.
Na
m
e
o
f
Aut
ho
r
C
M
So
Va
Fo
I
R
D
O
E
Vi
Su
P
Fu
R
ajesh
Ku
m
ar
Pra
k
h
y
a
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
Pu
v
v
u
la
Ve
n
k
ata
R
am
a
Kr
is
h
n
a
✓
✓
✓
✓
✓
✓
✓
C
:
C
o
n
c
e
p
t
u
a
l
i
z
a
t
i
o
n
M
:
M
e
t
h
o
d
o
l
o
g
y
So
:
So
f
t
w
a
r
e
Va
:
Va
l
i
d
a
t
i
o
n
Fo
:
Fo
r
mal
a
n
a
l
y
s
i
s
I
:
I
n
v
e
s
t
i
g
a
t
i
o
n
R
:
R
e
so
u
r
c
e
s
D
:
D
a
t
a
C
u
r
a
t
i
o
n
O
:
W
r
i
t
i
n
g
-
O
r
i
g
i
n
a
l
D
r
a
f
t
E
:
W
r
i
t
i
n
g
-
R
e
v
i
e
w
&
E
d
i
t
i
n
g
Vi
:
Vi
su
a
l
i
z
a
t
i
o
n
Su
:
Su
p
e
r
v
i
s
i
o
n
P
:
P
r
o
j
e
c
t
a
d
mi
n
i
st
r
a
t
i
o
n
Fu
:
Fu
n
d
i
n
g
a
c
q
u
i
si
t
i
o
n
CO
NF
L
I
C
T
O
F
I
N
T
E
R
E
S
T
ST
A
T
E
M
E
NT
T
h
is
m
an
u
s
cr
ip
t d
o
es n
o
t h
a
v
e
an
y
co
n
f
lict o
f
i
n
ter
est
.
DATA AV
AI
L
AB
I
L
I
T
Y
D
a
t
a
a
v
a
il
a
b
i
li
t
y
is
n
o
t
a
p
p
l
i
ca
b
l
e
t
o
t
h
is
p
a
p
e
r
a
s
n
o
n
e
w
d
at
a
w
e
r
e
c
r
e
a
t
e
d
o
r
a
n
al
y
z
e
d
i
n
t
h
is
s
t
u
d
y
.
RE
F
E
R
E
NC
E
S
[
1
]
V
.
B
e
c
a
t
t
i
n
i
,
P
.
G
a
b
r
i
e
l
l
i
,
L
.
F
r
a
t
t
i
n
i
,
D
.
W
e
i
s
b
a
c
h
,
a
n
d
M
.
M
a
z
z
o
t
t
i
,
“
A
t
w
o
-
st
e
p
c
a
r
b
o
n
p
r
i
c
i
n
g
s
c
h
e
me
e
n
a
b
l
i
n
g
a
n
e
t
-
z
e
r
o
a
n
d
n
e
t
-
n
e
g
a
t
i
v
e
C
O
2
-
e
mi
ss
i
o
n
s
w
o
r
l
d
,
”
C
l
i
m
a
t
i
c
C
h
a
n
g
e
,
v
o
l
.
1
7
1
,
n
o
.
1
–
2
,
2
0
2
2
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
0
5
8
4
-
0
2
2
-
0
3
3
4
0
-
z.
[
2
]
F
.
B
e
l
a
ï
d
,
A
.
A
l
-
S
a
r
i
h
i
,
a
n
d
R
.
A
l
-
M
e
s
t
n
e
e
r
,
“
B
a
l
a
n
c
i
n
g
c
l
i
m
a
t
e
m
i
t
i
g
a
t
i
o
n
a
n
d
e
n
e
r
g
y
s
e
c
u
r
i
t
y
g
o
a
l
s
a
m
i
d
c
o
n
v
e
r
g
i
n
g
g
l
o
b
a
l
e
n
e
r
g
y
c
r
i
s
e
s
:
T
h
e
r
o
l
e
o
f
g
r
e
e
n
i
n
v
e
s
t
m
e
n
t
s
,
”
R
e
n
e
w
a
b
l
e
E
n
e
r
g
y
,
v
o
l
.
2
0
5
,
p
p
.
5
3
4
–
5
4
2
,
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
r
e
n
e
n
e
.
2
0
2
3
.
0
1
.
0
8
3
.
[
3
]
K
.
S
h
a
h
z
a
d
a
n
d
I
.
I
q
b
a
l
C
h
e
e
ma,
“
Lo
w
-
c
a
r
b
o
n
t
e
c
h
n
o
l
o
g
i
e
s
i
n
a
u
t
o
m
o
t
i
v
e
i
n
d
u
st
r
y
a
n
d
d
e
c
a
r
b
o
n
i
z
i
n
g
t
r
a
n
s
p
o
r
t
,
”
J
o
u
r
n
a
l
o
f
Po
w
e
r
S
o
u
r
c
e
s
,
v
o
l
.
5
9
1
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
p
o
w
so
u
r
.
2
0
2
3
.
2
3
3
8
8
8
.
[
4
]
M
.
A
.
K
a
s
h
e
m,
M
.
S
h
a
ms
u
d
d
o
h
a
,
a
n
d
T.
N
a
s
i
r
,
“
S
u
st
a
i
n
a
b
l
e
t
r
a
n
s
p
o
r
t
a
t
i
o
n
s
o
l
u
t
i
o
n
s
f
o
r
i
n
t
e
l
l
i
g
e
n
t
m
o
b
i
l
i
t
y
:
a
f
o
c
u
s
o
n
r
e
n
e
w
a
b
l
e
e
n
e
r
g
y
a
n
d
t
e
c
h
n
o
l
o
g
i
c
a
l
a
d
v
a
n
c
e
m
e
n
t
s
f
o
r
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s
(
E
V
s)
a
n
d
f
l
y
i
n
g
c
a
r
s
,
”
F
u
t
u
r
e
T
r
a
n
s
p
o
rt
a
t
i
o
n
,
v
o
l
.
4
,
n
o
.
3
,
p
p
.
8
7
4
–
8
9
0
,
2
0
2
4
,
d
o
i
:
1
0
.
3
3
9
0
/
f
u
t
u
r
e
t
r
a
n
sp
4
0
3
0
0
4
2
.
[
5
]
M
.
K
i
a
sar
i
,
M
.
G
h
a
f
f
a
r
i
,
a
n
d
H
.
H
.
A
l
y
,
“
A
c
o
m
p
r
e
h
e
n
si
v
e
r
e
v
i
e
w
o
f
t
h
e
c
u
r
r
e
n
t
st
a
t
u
s
o
f
smar
t
g
r
i
d
t
e
c
h
n
o
l
o
g
i
e
s
f
o
r
r
e
n
e
w
a
b
l
e
e
n
e
r
g
i
e
s
i
n
t
e
g
r
a
t
i
o
n
a
n
d
f
u
t
u
r
e
t
r
e
n
d
s
:
T
h
e
r
o
l
e
o
f
m
a
c
h
i
n
e
l
e
a
r
n
i
n
g
a
n
d
e
n
e
r
g
y
st
o
r
a
g
e
s
y
st
e
ms
,”
En
e
r
g
i
e
s
,
v
o
l
.
1
7
,
n
o
.
1
6
,
2
0
2
4
,
d
o
i
:
1
0
.
3
3
9
0
/
e
n
1
7
1
6
4
1
2
8
.
[
6
]
M
.
A
v
e
sh
,
I
.
H
o
ss
a
i
n
,
a
n
d
R
.
C
.
S
h
a
r
ma
,
“
R
e
v
o
l
u
t
i
o
n
i
z
i
n
g
t
r
a
n
s
p
o
r
t
a
t
i
o
n
:
Th
e
f
u
t
u
r
e
i
m
p
a
c
t
o
f
g
r
e
e
n
e
n
e
r
g
y
,
”
E
n
e
r
g
y
,
En
v
i
r
o
n
m
e
n
t
,
a
n
d
S
u
st
a
i
n
a
b
i
l
i
t
y
,
v
o
l
.
P
a
r
t
F
3
2
2
8
,
p
p
.
2
6
1
–
2
9
3
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
0
7
/
9
7
8
-
9
8
1
-
97
-
0
4
3
7
-
8
_
1
2
.
[
7
]
Ek
r
e
m
A
l
a
g
o
z
a
n
d
Y
a
ser
A
l
g
h
a
w
i
,
“
Th
e
f
u
t
u
r
e
o
f
f
o
ssi
l
f
u
e
l
s
:
C
h
a
l
l
e
n
g
e
s
a
n
d
o
p
p
o
r
t
u
n
i
t
i
e
s
i
n
a
l
o
w
-
c
a
r
b
o
n
,”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
E
a
rt
h
S
c
i
e
n
c
e
s
K
n
o
w
l
e
d
g
e
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
5
,
n
o
.
3
,
p
p
.
3
8
1
–
3
8
8
,
2
0
2
3
,
[
O
n
l
i
n
e
]
.
A
v
a
i
l
a
b
l
e
:
h
t
t
p
s
:
/
/
w
w
w
.
i
j
e
s
k
a
.
c
o
m/
i
n
d
e
x
.
p
h
p
/
i
j
e
sk
a
/
a
r
t
i
c
l
e
/
v
i
e
w
/
2
9
1
[
8
]
P
.
C
h
e
e
k
a
t
a
m
a
r
l
a
,
“
H
y
d
r
o
g
e
n
a
n
d
t
h
e
g
l
o
b
a
l
e
n
e
r
g
y
t
r
a
n
s
i
t
i
o
n
—
p
a
t
h
t
o
s
u
st
a
i
n
a
b
i
l
i
t
y
a
n
d
a
d
o
p
t
i
o
n
a
c
r
o
ss
a
l
l
e
c
o
n
o
m
i
c
s
e
c
t
o
r
s
,”
En
e
r
g
i
e
s
,
v
o
l
.
1
7
,
n
o
.
4
,
2
0
2
4
,
d
o
i
:
1
0
.
3
3
9
0
/
e
n
1
7
0
4
0
8
0
7
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
A
cc
u
r
a
te
s
ta
te
o
f h
ea
lth
esti
ma
tio
n
u
s
in
g
h
yb
r
id
a
lg
o
r
ith
m
fo
r
elec
tr
ic
ve
h
icle
…
(
R
a
jesh
K
u
ma
r
P
r
a
kh
ya
)
1445
[
9
]
M
.
K
u
m
a
r
a
n
d
S
.
S
h
a
r
ma
,
“
R
e
n
e
w
a
b
l
e
e
n
e
r
g
y
a
n
d
s
u
st
a
i
n
a
b
l
e
t
r
a
n
sp
o
r
t
a
t
i
o
n
,
”
R
o
l
e
o
f
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
f
o
r
S
u
st
a
i
n
a
b
l
e
Fu
t
u
r
e
,
p
p
.
3
7
5
–
4
1
4
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
0
7
/
9
7
8
-
981
-
97
-
0
7
1
0
-
2
_
2
2
.
[
1
0
]
A
.
B
o
r
e
t
t
i
a
n
d
B
.
G
.
P
o
l
l
e
t
,
“
H
y
d
r
o
g
e
n
e
c
o
n
o
my
:
P
a
v
i
n
g
t
h
e
p
a
t
h
t
o
a
su
st
a
i
n
a
b
l
e
,
l
o
w
-
c
a
r
b
o
n
f
u
t
u
r
e
,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
H
y
d
r
o
g
e
n
E
n
e
r
g
y
,
v
o
l
.
9
3
,
p
p
.
3
0
7
–
3
1
9
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
i
j
h
y
d
e
n
e
.
2
0
2
4
.
1
0
.
3
5
0
.
[
1
1
]
J.
Zh
a
n
g
e
t
a
l
.
,
“
P
a
t
e
n
t
-
b
a
se
d
t
e
c
h
n
o
l
o
g
i
c
a
l
d
e
v
e
l
o
p
me
n
t
s
a
n
d
s
u
r
f
a
c
t
a
n
t
s
a
p
p
l
i
c
a
t
i
o
n
o
f
l
i
t
h
i
u
m
-
i
o
n
b
a
t
t
e
r
i
e
s
f
i
r
e
-
e
x
t
i
n
g
u
i
s
h
i
n
g
a
g
e
n
t
,
”
J
o
u
r
n
a
l
o
f
E
n
e
r
g
y
C
h
e
m
i
st
r
y
,
v
o
l
.
8
8
,
p
p
.
3
9
–
6
3
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
e
c
h
e
m.
2
0
2
3
.
0
8
.
0
3
7
.
[
1
2
]
T.
W
a
n
g
e
t
a
l
.
,
“
R
e
c
e
n
t
s
t
a
t
u
s
,
k
e
y
s
t
r
a
t
e
g
i
e
s
,
a
n
d
c
h
a
l
l
e
n
g
i
n
g
p
r
o
sp
e
c
t
s
f
o
r
f
a
st
c
h
a
r
g
i
n
g
s
i
l
i
c
o
n
-
b
a
se
d
a
n
o
d
e
s
f
o
r
l
i
t
h
i
u
m
-
i
o
n
b
a
t
t
e
r
i
e
s
,
”
C
a
r
b
o
n
,
v
o
l
.
2
3
0
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
a
r
b
o
n
.
2
0
2
4
.
1
1
9
6
1
5
.
[
1
3
]
V
.
M
.
L
e
a
l
,
J
.
S
.
R
i
b
e
i
r
o
,
E
.
L
.
D
.
C
o
e
l
h
o
,
a
n
d
M
.
B
.
J
.
G
.
F
r
e
i
t
a
s
,
“
R
e
c
y
c
l
i
n
g
o
f
s
p
e
n
t
l
i
t
h
i
u
m
-
i
o
n
b
a
t
t
e
r
i
e
s
a
s
a
s
u
s
t
a
i
n
a
b
l
e
s
o
l
u
t
i
o
n
t
o
o
b
t
a
i
n
r
a
w
m
a
t
e
r
i
a
l
s
f
o
r
d
i
f
f
e
r
e
n
t
a
p
p
l
i
c
a
t
i
o
n
s
,
”
J
o
u
r
n
a
l
o
f
E
n
e
r
g
y
C
h
e
m
i
s
t
r
y
,
v
o
l
.
7
9
,
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
e
c
h
e
m
.
2
0
2
2
.
0
8
.
0
0
5
.
[
1
4
]
A
.
Za
n
o
l
e
t
t
i
,
E.
C
a
r
e
n
a
,
C
.
F
e
r
r
a
r
a
,
a
n
d
E.
B
o
n
t
e
mp
i
,
“
A
r
e
v
i
e
w
o
f
l
i
t
h
i
u
m
-
i
o
n
b
a
t
t
e
r
y
r
e
c
y
c
l
i
n
g
:
t
e
c
h
n
o
l
o
g
i
e
s,
s
u
st
a
i
n
a
b
i
l
i
t
y
,
a
n
d
o
p
e
n
i
ss
u
e
s
,
”
Ba
t
t
e
ri
e
s
,
v
o
l
.
1
0
,
n
o
.
1
,
2
0
2
4
,
d
o
i
:
1
0
.
3
3
9
0
/
b
a
t
t
e
r
i
e
s
1
0
0
1
0
0
3
8
.
[
1
5
]
B
.
H
e
e
t
a
l
.
,
“
A
c
o
mp
r
e
h
e
n
s
i
v
e
r
e
v
i
e
w
o
f
l
i
t
h
i
u
m
-
i
o
n
b
a
t
t
e
r
y
(
L
i
B
)
r
e
c
y
c
l
i
n
g
t
e
c
h
n
o
l
o
g
i
e
s
a
n
d
i
n
d
u
st
r
i
a
l
mark
e
t
t
r
e
n
d
i
n
si
g
h
t
s
,
”
Re
c
y
c
l
i
n
g
,
v
o
l
.
9
,
n
o
.
1
,
2
0
2
4
,
d
o
i
:
1
0
.
3
3
9
0
/
r
e
c
y
c
l
i
n
g
9
0
1
0
0
0
9
.
[
1
6
]
Y
.
X
i
a
o
e
t
a
l
.
,
“
M
a
c
h
i
n
e
l
e
a
r
n
i
n
g
a
p
p
l
i
e
d
t
o
l
i
t
h
i
u
m
-
i
o
n
b
a
t
t
e
r
y
s
t
a
t
e
e
st
i
mat
i
o
n
f
o
r
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s
:
M
e
t
h
o
d
t
h
e
o
r
e
t
i
c
a
l
,
t
e
c
h
n
o
l
o
g
i
c
a
l
s
t
a
t
u
s
,
a
n
d
f
u
t
u
r
e
d
e
v
e
l
o
p
m
e
n
t
,
”
E
n
e
r
g
y
S
t
o
ra
g
e
,
v
o
l
.
6
,
n
o
.
8
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
0
2
/
e
st
2
.
7
0
0
8
0
.
[
1
7
]
A
.
M
a
n
o
h
a
r
a
n
,
K
.
M
.
B
e
g
a
m,
V
.
R
.
A
p
a
r
o
w
,
a
n
d
D
.
S
o
o
r
i
a
m
o
o
r
t
h
y
,
“
A
r
t
i
f
i
c
i
a
l
n
e
u
r
a
l
n
e
t
w
o
r
k
s,
g
r
a
d
i
e
n
t
b
o
o
s
t
i
n
g
a
n
d
s
u
p
p
o
r
t
v
e
c
t
o
r
ma
c
h
i
n
e
s
f
o
r
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
b
a
t
t
e
r
y
s
t
a
t
e
e
st
i
ma
t
i
o
n
:
A
r
e
v
i
e
w
,
”
J
o
u
rn
a
l
o
f
En
e
r
g
y
S
t
o
r
a
g
e
,
v
o
l
.
5
5
,
2
0
2
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
e
s
t
.
2
0
2
2
.
1
0
5
3
8
4
.
[
1
8
]
M
.
S
.
H
o
ssa
i
n
Li
p
u
e
t
a
l
.
,
“
D
a
t
a
d
r
i
v
e
n
h
e
a
l
t
h
a
n
d
l
i
f
e
p
r
o
g
n
o
si
s
ma
n
a
g
e
men
t
o
f
s
u
p
e
r
c
a
p
a
c
i
t
o
r
a
n
d
l
i
t
h
i
u
m
-
i
o
n
b
a
t
t
e
r
y
s
t
o
r
a
g
e
sy
st
e
ms:
D
e
v
e
l
o
p
me
n
t
s
,
i
m
p
l
e
m
e
n
t
a
t
i
o
n
a
s
p
e
c
t
s
,
l
i
mi
t
a
t
i
o
n
s,
a
n
d
f
u
t
u
r
e
d
i
r
e
c
t
i
o
n
s
,
”
J
o
u
r
n
a
l
o
f
En
e
rg
y
S
t
o
r
a
g
e
,
v
o
l
.
9
8
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
e
st
.
2
0
2
4
.
1
1
3
1
7
2
.
[
1
9
]
A
.
D
a
n
n
i
e
r
,
G
.
B
r
a
n
d
o
,
M
.
R
i
b
e
r
a
,
a
n
d
I
.
S
p
i
n
a
,
“
Li
-
i
o
n
b
a
t
t
e
r
i
e
s
f
o
r
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
a
p
p
l
i
c
a
t
i
o
n
s
:
A
n
o
v
e
r
v
i
e
w
o
f
a
c
c
u
r
a
t
e
st
a
t
e
o
f
c
h
a
r
g
e
/
st
a
t
e
o
f
h
e
a
l
t
h
e
s
t
i
mat
i
o
n
m
e
t
h
o
d
s
,
”
E
n
e
r
g
i
e
s
,
v
o
l
.
1
8
,
n
o
.
4
,
2
0
2
5
,
d
o
i
:
1
0
.
3
3
9
0
/
e
n
1
8
0
4
0
7
8
6
.
[
2
0
]
D
.
M
a
k
s
i
mo
v
n
a
V
a
k
h
r
u
s
h
e
v
a
a
n
d
J
.
X
u
,
“
M
o
d
e
l
‐
d
r
i
v
e
n
ma
n
u
f
a
c
t
u
r
i
n
g
o
f
h
i
g
h
‐
e
n
e
r
g
y
‐
d
e
n
s
i
t
y
b
a
t
t
e
r
i
e
s
:
A
r
e
v
i
e
w
,
”
B
a
t
t
e
r
i
e
s
&
S
u
p
e
r
c
a
p
s
,
v
o
l
.
8
,
n
o
.
4
,
A
p
r
.
2
0
2
5
,
d
o
i
:
1
0
.
1
0
0
2
/
b
a
t
t
.
2
0
2
4
0
0
5
3
9
.
[
2
1
]
X
.
Y
a
n
g
e
t
a
l
.
,
“
Li
t
h
i
u
m
-
io
n
b
a
t
t
e
r
y
s
t
a
t
e
o
f
h
e
a
l
t
h
e
s
t
i
m
a
t
i
o
n
w
i
t
h
m
u
l
t
i
-
f
e
a
t
u
r
e
c
o
l
l
a
b
o
r
a
t
i
v
e
a
n
a
l
y
si
s
a
n
d
d
e
e
p
l
e
a
r
n
i
n
g
met
h
o
d
,
”
B
a
t
t
e
r
i
e
s
,
v
o
l
.
9
,
n
o
.
2
,
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
b
a
t
t
e
r
i
e
s
9
0
2
0
1
2
0
.
[
2
2
]
D
.
G
u
o
,
P
.
D
u
a
n
,
Z
.
Y
a
n
g
,
X
.
Z
h
a
n
g
,
a
n
d
Y
.
S
u
,
“
C
o
n
v
o
l
u
t
i
o
n
a
l
n
e
u
r
a
l
n
e
t
w
o
r
k
a
n
d
b
i
d
i
r
e
c
t
i
o
n
a
l
l
o
n
g
sh
o
r
t
-
t
e
r
m me
m
o
r
y
(
C
N
N
-
B
i
LST
M
)
-
a
t
t
e
n
t
i
o
n
-
b
a
s
e
d
p
r
e
d
i
c
t
i
o
n
o
f
t
h
e
a
m
o
u
n
t
o
f
s
i
l
i
c
a
p
o
w
d
e
r
m
o
v
i
n
g
i
n
a
n
d
o
u
t
o
f
a
w
a
r
e
h
o
u
se
,”
En
e
r
g
i
e
s
,
v
o
l
.
1
7
,
n
o
.
1
5
,
2
0
2
4
,
d
o
i
:
1
0
.
3
3
9
0
/
e
n
1
7
1
5
3
7
5
7
.
[
2
3
]
D
.
P
y
a
r
i
,
A
.
G
e
e
t
h
a
,
B
.
K
.
B
a
b
u
,
M
.
M
i
s
b
a
,
V
.
A
.
V
u
y
y
u
r
u
,
a
n
d
B
.
K
.
B
a
l
a
,
“
E
n
h
a
n
c
i
n
g
c
l
o
u
d
c
o
m
p
u
t
i
n
g
s
e
c
u
r
i
t
y
t
h
r
o
u
g
h
h
y
b
r
i
d
C
N
N
-
LSTM
a
n
d
a
d
v
a
n
c
e
d
d
a
t
a
mi
n
i
n
g
t
e
c
h
n
i
q
u
e
s
,
”
2
0
2
4
3
r
d
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
El
e
c
t
r
i
c
a
l
,
E
l
e
c
t
r
o
n
i
c
s,
I
n
f
o
rm
a
t
i
o
n
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
T
e
c
h
n
o
l
o
g
i
e
s
,
I
C
EEICT
2
0
2
4
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
E
EI
C
T6
1
5
9
1
.
2
0
2
4
.
1
0
7
1
8
5
0
9
.
[
2
4
]
S
.
Jafar
i
,
J
.
K
i
m
,
W
.
C
h
o
i
,
a
n
d
Y
.
C
.
B
y
u
n
,
“
I
n
t
e
g
r
a
t
i
n
g
mu
l
t
i
l
a
y
e
r
p
e
r
c
e
p
t
r
o
n
a
n
d
su
p
p
o
r
t
v
e
c
t
o
r
r
e
g
r
e
ssi
o
n
f
o
r
e
n
h
a
n
c
e
d
st
a
t
e
o
f
h
e
a
l
t
h
e
st
i
ma
t
i
o
n
i
n
l
i
t
h
i
u
m
-
i
o
n
b
a
t
t
e
r
i
e
s
,
”
I
EE
E
A
c
c
e
ss
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
4
.
3
4
9
7
6
5
6
.
[
2
5
]
Z.
W
a
n
g
e
t
a
l
.
,
“
A
d
a
p
t
a
b
l
e
c
a
p
a
c
i
t
y
e
st
i
mat
i
o
n
o
f
l
i
t
h
i
u
m
-
i
o
n
b
a
t
t
e
r
y
b
a
s
e
d
o
n
sh
o
r
t
-
d
u
r
a
t
i
o
n
r
a
n
d
o
m
c
o
n
st
a
n
t
-
c
u
r
r
e
n
t
c
h
a
r
g
i
n
g
v
o
l
t
a
g
e
s
a
n
d
c
o
n
v
o
l
u
t
i
o
n
a
l
n
e
u
r
a
l
n
e
t
w
o
r
k
s,
”
E
n
e
rg
y
,
v
o
l
.
3
0
6
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
e
n
e
r
g
y
.
2
0
2
4
.
1
3
2
5
4
1
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
Ra
je
sh
K
u
m
a
r
Pra
k
h
y
a
c
o
m
p
lete
d
h
is
B.
Tec
h
.
i
n
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
i
n
e
e
rin
g
fro
m
JN
TUH
in
2
0
0
2
.
He
c
o
m
p
lete
d
h
is
m
a
ste
r'
s
fr
o
m
th
e
Un
i
v
e
rsity
C
o
ll
e
g
e
o
f
En
g
i
n
e
e
rin
g
,
Os
m
a
n
ia
Un
iv
e
rsity
in
th
e
y
e
a
r
2
0
0
5
.
He
h
a
s
1
9
y
e
a
rs
o
f
Ex
p
e
rien
c
e
in
tea
c
h
i
n
g
.
He
wo
rk
e
d
a
t
v
a
rio
u
s
lev
e
ls
in
e
n
g
i
n
e
e
rin
g
c
o
ll
e
g
e
s.
Cu
rre
n
tl
y
,
h
e
is
wo
rk
in
g
a
s
a
n
As
so
c
iate
P
ro
fe
ss
o
r
i
n
t
h
e
De
p
a
rtme
n
t
o
f
EE
E
at
CVR
Co
ll
e
g
e
o
f
En
g
i
n
e
e
rin
g
,
Hy
d
e
ra
b
a
d
.
His
a
re
a
s
o
f
re
se
a
rc
h
in
c
lu
d
e
r
e
n
e
wa
b
le
e
n
e
r
g
y
,
e
lec
tri
c
d
istri
b
u
ti
o
n
sy
ste
m
s
,
p
o
we
r
sy
ste
m
s
o
p
ti
m
iza
ti
o
n
,
an
d
AI
tec
h
n
iq
u
e
s
a
p
p
li
c
a
ti
o
n
s
to
p
o
we
r
sy
ste
m
s.
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
ra
jee
e
c
v
r@g
m
a
il
.
c
o
m
.
P
u
v
v
u
l
a
V
e
n
k
a
t
a
R
a
m
a
K
r
i
s
h
n
a
i
s
a
n
As
s
o
c
ia
t
e
P
r
o
fe
s
s
o
r
a
t
G
I
TA
M
(
d
e
e
m
e
d
t
o
b
e
a
u
n
i
v
e
r
s
i
t
y
)
,
H
y
d
e
r
a
b
a
d
,
D
e
p
a
r
t
m
e
n
t
o
f
E
l
e
c
t
r
i
c
a
l
a
n
d
E
l
e
c
t
r
o
n
i
c
s
E
n
g
i
n
e
e
r
i
n
g
.
I
n
2
0
2
0
,
h
e
o
b
t
a
i
n
e
d
h
i
s
P
h
.
D
.
f
r
o
m
J
N
T
U
i
n
H
y
d
e
r
a
b
a
d
.
H
e
e
a
r
n
e
d
a
B
.
E
.
i
n
E
E
E
f
r
o
m
O
s
m
a
n
i
a
U
n
i
v
e
r
s
i
t
y
o
f
H
y
d
e
r
a
b
a
d
i
n
Te
l
a
n
g
a
n
a
i
n
2
0
0
0
a
n
d
a
n
M
.
T
e
c
h
.
i
n
p
o
w
e
r
s
y
s
t
e
m
s
fr
o
m
I
I
T
R
o
o
r
k
e
e
i
n
2
0
0
4
.
H
e
h
a
s
b
e
e
n
t
e
a
c
h
i
n
g
f
o
r
1
9
y
e
a
r
s.
H
e
i
s
s
u
p
e
r
v
i
s
i
n
g
5
P
h
.
D
.
s
t
u
d
e
n
t
s
a
t
G
I
TA
M
(
d
e
e
m
e
d
t
o
b
e
a
u
n
i
v
e
r
s
i
t
y
)
,
H
y
d
e
r
a
b
a
d
.
H
e
c
a
n
b
e
c
o
n
t
a
c
t
e
d
a
t
e
m
a
i
l
:
r
p
u
v
v
u
l
a
@
g
i
t
a
m
.
e
d
u
.
Evaluation Warning : The document was created with Spire.PDF for Python.