Optimized reactive power management system for smart grid architecture
International Journal of Electrical and Computer Engineering
Abstract
The Indian power grid is an extensive and mature power system that transfers large amounts of electricity between two regions linked by a power corridor. The increased reliance on decentralized renewable energy sources (RESs), such as solar power, has led to power system instability and voltage variations. Power quality and dependability in a smart grid (SG) setting can be enhanced by the careful tracking and administration of solar energy generated by panels. This study proposes a number of reactive power regulation algorithms that take smart grids into account. When developing a kernel, debugging is a must in optimal reactive power management. In this research, a debugging primitive called physical memory protection (PMP), a security feature, is considered. Debugging in the kernel domain requires specialized tools, in contrast to the user space where we have kernel assistance. This research proposes an optimal reactive power management in smart grid using kernel debugging model (ORPM-SG-KDM) for managing the reactive power efficiently. This research achieved 98.5% accuracy in kernel debugging and 99.2% accuracy in optimal reactive power management. Kernel debugging accuracy is increased by 1.8% and 3% of reactive power management accuracy is increased.
Discover Our Library
Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.





