A novel fuzzy logic based sliding mode control scheme for non-linear systems
International Journal of Artificial Intelligence
Abstract
Sliding mode control (SMC) has been widely used in the control of non-linear systems due to many inherent properties like superposition, multiple isolated equilibrium points, finite escape time, limit cycle, bifurcation. This research proposes super-twisting controller architecture with a varying sliding surface; the sliding surface being adjusted by a simple single input-single output (SISO) fuzzy logic inference system. The proposed super-twisting controller utilizes a varying sliding surface with an online slope update using a SISO fuzzy logic inference system. This rotates sliding surface in the direction of enhancing the dynamic performance of the system without compromising steady state performance and stability. The performance of the proposed controller is compared to that of the basic super-twisting sliding mode (STSM) controller with a fixed sliding surface through simulations for a benchmark non-linear system control system model with parametric uncertainties and disturbances. The simulation results have confirmed that the proposed approach has the improved dynamic performance in terms of faster response than the typical STSM controller with a fixed sliding surface. This improved dynamic performance is achieved without affecting robustness, system stability and level of accuracy in tracking. The proposed control approach is straightforward to implement since the sliding surface slope is regulated by a SISO fuzzy logic inference system. The MATLAB/Simulink is used to display the efficiency of proposed system over conventional system.
Discover Our Library
Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.





