Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

28,428 Article Results

Secure clustering and routing – based adaptive – bald eagle search for wireless sensor networks

10.11591/ijece.v15i4.pp3824-3832
Roopashree Hejjaji Ranganathasharma , Yogeesh Ambalagere Chandrashekaraiah
Wireless sensor networks (WSNs) are self-regulating networks consisting of several tiny sensor nodes for monitoring and tracking applications over extensive areas. Energy consumption and security are the two significant challenges in these networks due to their limited resources and open nature. To address these challenges and optimize energy consumption while ensuring security, this research proposes an adaptive – bald eagle search (A-BES) optimization algorithm enabled secure clustering and routing for WSNs. The A-BES algorithm selects secure cluster heads (SCHs) through several fitness functions, thereby reducing energy consumption across the nodes. Next, secure and optimal routes are chosen using A-BES to prevent malicious nodes from interfering with the communication paths and to enhance the overall network lifetime. The proposed algorithm shows significantly lower energy consumption, with values of 0.27, 0.81, 1.38, 2.27, and 3.01 J as the number of nodes increases from 100 to 300. This demonstrates a clear improvement over the existing residual energy-based data availability approach (REDAA).
Volume: 15
Issue: 4
Page: 3824-3832
Publish at: 2025-08-01

Bridging generations: a scoping review of teaching technology to the elderly using intergenerational strategies

10.11591/ijict.v14i2.pp529-539
Nahdatul Akma Ahmad , Tengku Shahrom Tengku Shahdan , Norziana Yahya
The proportion of the global population aged 60 and above is projected to nearly double by 2050, emphasizing the urgent need for societies to adapt to the challenges posed by an aging population. As the elderly increasingly face difficulties in navigating digital technologies, which are essential for daily tasks and accessing services, the digital divide often leads to digital exclusion. This scoping review investigates intergenerational strategies used to teach technology to older adults. Seventeen studies from 11 countries were analyzed, highlighting six key intergenerational learning strategies: reverse mentoring, virtual learning, collaborative learning, family intergenerational activities, game play learning, and storytelling. These strategies offer diverse methods for enhancing digital literacy and social engagement, with reverse mentoring showing promise in fostering digital competence, and virtual learning promoting inclusivity across generations. However, barriers such as technological access, ongoing support, and cultural differences complicate implementation. This review underscores the importance of adapting instructional approaches to the needs of the elderly while leveraging intergenerational interactions to bridge the digital literacy gap. It calls for sustained efforts to address user needs, provide technical support, and ensure inclusivity, especially for isolated individuals, to maximize the effectiveness and sustainability of these strategies.
Volume: 14
Issue: 2
Page: 529-539
Publish at: 2025-08-01

Unpacking the drivers of artificial intelligence regulation: driving forces and critical controls in artificial intelligence governance

10.11591/ijai.v14.i4.pp2655-2666
Ibrahim Atoum , Salahiddin Altahat
The burgeoning field of artificial intelligence (AI) necessitates a nuanced approach to governance that integrates technological advancement, ethical considerations, and regulatory oversight. As various AI governance frameworks emerge, a fragmented landscape hinders effective implementation. This article examines the driving forces behind AI regulation and the essential control mechanisms that underpin these frameworks. We analyze market-driven, state-driven, and rights-driven regulatory approaches, focusing on their underlying motivations. Furthermore, critical regulatory controls such as data governance, risk management, and human oversight are highlighted to demonstrate their roles in establishing effective governance structures. Additionally, the importance of international cooperation and stakeholder collaboration in addressing the challenges posed by rapid technological change is emphasized. By providing insights into the strengths, weaknesses, and potential synergies of different governance models, this study contributes to the development of equitable and effective AI regulatory frameworks that encourage innovation while safeguarding societal interests. Ultimately, the findings aim to inform policymakers, industry leaders, and civil society organizations in their efforts to foster a future where AI is utilized responsibly and equitably for the betterment of humanity.
Volume: 14
Issue: 4
Page: 2655-2666
Publish at: 2025-08-01

Design strategies for solar photovoltaic integration in rural areas

10.11591/ijece.v15i4.pp3603-3612
Intan Mastura Saadon , Emy Zairah Ahmad , Nurbahirah Norddin , Norain Idris
This study explores the optimization of photovoltaic (PV) systems in the Sungai Tiang Camp region, Malaysia, with a focus on determining the ideal tilt angles to maximize energy generation in a tropical environment while incorporating a cost analysis. While existing studies optimize tilt angles for energy maximization in temperate regions, this study addresses the unique climatic and socio-economic conditions of rural Malaysia. Unlike fixed-tilt assumptions common in prior work, this research explores cost-effective, manually adjustable systems tailored for local weather patterns and rural affordability. To address this, the study examines the relationship between tilt angle, solar irradiance, temperature and output power. The results are analyzed to identify optimal configurations. Results reveal that tilt angles between 5° and 10° deliver the highest energy output, with slight seasonal adjustments for efficiency improvement. These findings align with Malaysia's tropical solar profile, offering practical insights for micro-scale solar deployments in similar climates. By addressing the unique needs of remote areas, this research contributes to bridging the gap in localized PV studies. Its outcomes not only enhance the understanding of solar PV performance in tropical conditions but also provide valuable guidelines for rural electrification and sustainable energy solutions in equatorial regions worldwide.
Volume: 15
Issue: 4
Page: 3603-3612
Publish at: 2025-08-01

A comparative study of deep learning-based network intrusion detection system with explainable artificial intelligence

10.11591/ijece.v15i4.pp4109-4119
Tan Juan Kai , Lee-Yeng Ong , Meng-Chew Leow
In the rapidly evolving landscape of cybersecurity, robust network intrusion detection systems (NIDS) are crucial to countering increasingly sophisticated cyber threats, including zero-day attacks. Deep learning approaches in NIDS offer promising improvements in intrusion detection rates and reduction of false positives. However, the inherent opacity of deep learning models presents significant challenges, hindering the understanding and trust in their decision-making processes. This study explores the efficacy of explainable artificial intelligence (XAI) techniques, specifically Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), in enhancing the transparency and trustworthiness of NIDS systems. With the implementation of TabNet architecture on the AWID3 dataset, it is able to achieve a remarkable accuracy of 99.99%. Despite this high performance, concerns regarding the interpretability of the TabNet model's decisions persist. By employing SHAP and LIME, this study aims to elucidate the intricacies of model interpretability, focusing on both global and local aspects of the TabNet model's decision-making processes. Ultimately, this study underscores the pivotal role of XAI in improving understanding and fostering trust in deep learning -based NIDS systems. The robustness of the model is also being tested by adding the signal-to-noise ratio (SNR) to the datasets.
Volume: 15
Issue: 4
Page: 4109-4119
Publish at: 2025-08-01

Techno-economic analysis of a 4 MW solar photovoltaic capacity expansion in a remote Indonesian village

10.11591/ijece.v15i4.pp4133-4147
Agie Maliki Akbar , Fahmy Rinanda Saputri , David Tee
As of the end of 2022, Indonesia’s electrification ratio reached 99.63%, reflecting significant progress. However, the province of East Nusa Tenggara lags behind with an electrification ratio below 90%, indicating a considerable gap in energy access. This challenge is particularly evident in Oelpuah village, where frequent power outages occur due to the inadequacy of the existing 5 MW solar farm. This study proposes addressing this shortfall by expanding the solar farm capacity by an additional 4 MW. Comprehensive feasibility studies were conducted, evaluating solar radiation, natural disaster risks, and land use. The analysis, supported by PVSyst simulations, identified a suitable site with high radiation levels, though it is not entirely free from disaster risks. The design requires 13,500 solar panel modules, each with a capacity of 330 Wp, and seven 500 kW inverters. Optimal system performance is achieved with a 15-degree panel tilt and a 0-degree azimuth, aligning with the site's location south of the equator. This expansion could supply electricity to up to 4,014 households, each with a typical power usage of 0.825 kW. The study highlights the need for further research to enhance electricity coverage across Indonesia.
Volume: 15
Issue: 4
Page: 4133-4147
Publish at: 2025-08-01

Influence of playing online video games on Filipino college students’ confidence in speaking English

10.11591/ijere.v14i4.32842
Allan Jay Esteban , Kiwan Sung
Online video games that require players to communicate in English provide opportunities for students to practice their language skills and overcome their fear of speaking in English. Unfortunately, the literature reveals an existing gap in investigating how such games can influence students’ confidence in speaking English, especially in the Philippine context. Therefore, this study surveyed 148 Filipino college English-as-a-second language (ESL) students to examine differences in their perceived confidence in speaking English depending on learner variables such as gender, time spent online gaming (TSOG), number of games played (NOGP), self-rated speaking proficiency (SRSP), and game interactivity.Using independent t-tests and one-way analysis of variance (ANOVA) analyses, results revealed statistically significant differences in the development of communication skills in English (DCSE) depending on the TSOG, willingness to communicate (WTC) in English depending on the NOGP, and enhancement of communication skills in English, active participation in class, and reduced anxiety in using English (RAUE) depending on the SRSP. This exploratory study indicates that online video games can be valuable tools in increasing English speaking confidence among Filipino college students. Further research is posited to understand the extent to which online games influence ESL learners’ speaking confidence in different educational and cultural contexts.
Volume: 14
Issue: 4
Page: 2555-2564
Publish at: 2025-08-01

Machine learning approaches to cybersecurity in the industrial internet of things: a review

10.11591/ijece.v15i4.pp3851-3866
Melanie Heier , Penatiyana W. Chandana Prasad , Md Shohel Sayeed
The industrial internet of things (IIoT) is increasingly used within various sectors to provide innovative business solutions. These technological innovations come with additional cybersecurity risks, and machine learning (ML) is an emerging technology that has been studied as a solution to these complex security challenges. At time of writing, to the author’s knowledge, a review of recent studies on this topic had not been undertaken. This review therefore aims to provide a comprehensive picture of the current state of ML solutions for IIoT cybersecurity with insights into what works to inform future research or real-world solutions. A literary search found twelve papers to review published in 2021 or later that proposed ML solutions to IIoT cybersecurity concerns. This review found that federated learning and semi-supervised learning in particular are promising ML techniques being proposed to combat the concerns around IIoT cybersecurity. Artificial neural network approaches are also commonly proposed in various combinations with other techniques to ensure fast and accurate cybersecurity solutions. While there is not currently a consensus on the best ML techniques to apply to IIoT cybersecurity, these findings offer insight into those approaches currently being utilized along with gaps where further examination is required.
Volume: 15
Issue: 4
Page: 3851-3866
Publish at: 2025-08-01

Multilevel and multisource data fusion approach for network intrusion detection system using machine learning techniques

10.11591/ijece.v15i4.pp3938-3948
Harshitha Somashekar , Pramod Halebidu Basavaraju
To enhance the performance of network intrusion detection systems (NIDS), this paper proposes a novel multilevel and multisource data fusion approach, applied to NSL-KDD and UNSW-NB15 datasets. The proposed approach includes three various levels of operations, which are feature level fusion, dimensionality reduction, and prediction level fusion. In the first stage features of NSL-KDD and UNSW-NB15 both datasets are fused by applying the inner join joint operation by selecting common features like protocol, service and label. Once the data sets are fused in the first level, linear discriminant analysis is applied for 12 feature columns which is reduced to a single feature column leading to dimensionality reduction at the second level. Finally, in the third level, the prediction level fusion technique is applied to two neural network models, where one neural network model has a single input node, two hidden nodes, and two output nodes, and another model having a single input node, three hidden nodes, and two output nodes. The outputs obtained from these two models are then fused using a prediction fusion technique. The proposed approach achieves a classification accuracy of 97.5%.
Volume: 15
Issue: 4
Page: 3938-3948
Publish at: 2025-08-01

Adaptive multi-radio quality of service model using neural network approach for robust wireless sensor network transmission in multipath fading environment

10.11591/ijece.v15i4.pp3795-3802
Galang Persada Nurani Hakim , Dian Widi Astuti , Ahmad Firdausi , Huda A. Majid
Wireless sensor network loss in wireless data transmission is one of the problems that needs attention. Interference, fading, congestion, and delay are some factors that cause loss in wireless data transmission. This paper used an adaptive multi-radio model to enhance the wireless data transmission to be more robust to disturbance in a multipath fading environment. A neural network approach was used to generate the adaptive model. If we use 433 MHz as our carrier frequency with 250 kHz bandwidth and 12 spreading factors, we can get signal noise ratio (SNR) for 20 meters at about -9.8 dB. Thus, we can use the adaptive model to enhance the WSN wireless data transmission's SNR to 9 dB, automatically changing the radio configuration to 797.1 MHz frequency, with 378.1 bandwidth and 7.111 for spreading factor. Based on the result, the wireless data transmission link has been successfully enhanced using the proposed adaptive model for wireless sensor networks (WSN) in a multipath fading environment.
Volume: 15
Issue: 4
Page: 3795-3802
Publish at: 2025-08-01

Multi-layer convolutional autoencoder for recognizing three-dimensional patterns in attention deficit hyperactivity disorder using resting-state functional magnetic resonance imaging

10.11591/ijece.v15i4.pp3965-3976
Zarina Begum , Kareemulla Shaik
Attention deficit hyperactivity disorder (ADHD) is a neurological disorder that develops over time and is typified by impulsivity, hyperactivity, and attention deficiency. There have been noticeable changes in the patterns of brain activity in recent studies using functional magnetic resonance imaging (fMRI). Particularly in the prefrontal cortex. Machine learning algorithms show promise in distinguishing ADHD subtypes based on these neurobiological signatures. However, the inherent heterogeneity of ADHD complicates consistent classification, while small sample sizes limit the generalizability of findings. Additionally, methodological variability across studies contributes to inconsistent results, and the opaque nature of machine learning models hinders the understanding of underlying mechanisms. We suggest a novel deep learning architecture to overcome these issues by combining spatio-temporal feature extraction and classification through a hierarchical residual convolutional noise reduction autoencoder (HRCNRAE) and a 3D convolutional gated memory unit (GMU). This framework effectively reduces spatial dimensions, captures key temporal and spatial features, and utilizes a sigmoid classifier for robust binary classification. Our methodology was rigorously validated on the ADHD-200 dataset across five sites, demonstrating enhancements in diagnostic accuracy ranging from 1.26% to 9.6% compared to existing models. Importantly, this research represents the first application of a 3D Convolutional GMU for diagnosing ADHD with fMRI data. The improvements highlight the efficacy of our architecture in capturing complex spatio-temporal features, paving the way for more accurate and reliable ADHD diagnoses.
Volume: 15
Issue: 4
Page: 3965-3976
Publish at: 2025-08-01

Blockchain and internet of things synergy: transforming smart grids for the future

10.11591/ijece.v15i4.pp4239-4248
Mouad Bensalah , Abdellatif Hair , Reda Rabie
Conventional smart grid systems face challenges in security, transparency, and efficiency. This study addresses these limitations by integrating blockchain and internet of things (IoT) technologies, presenting proof-of-concept implemented on an Orange Pi 4 single-board computer. The realized prototype demonstrated secure and transparent energy transaction management with consistent throughput between 7.45 and 7.81 transactions per second, and efficient resource utilization across varying transaction volumes. However, scalability challenges, including a linear increase in processing time with larger block sizes, emphasize the need for optimized consensus mechanisms. The findings underscore the feasibility of blockchain-based smart grids in resource-constrained settings, paving the way for advancements in peer-to-peer energy trading, decentralized energy storage, and integration with artificial intelligence for dynamic energy optimization. This work contributes to developing secure, efficient, and sustainable energy systems.
Volume: 15
Issue: 4
Page: 4239-4248
Publish at: 2025-08-01

Breast cancer identification using a hybrid machine learning system

10.11591/ijece.v15i4.pp3928-3937
Toni Arifin , Ignatius Wiseto Prasetyo Agung , Erfian Junianto , Dari Dianata Agustin , Ilham Rachmat Wibowo , Rizal Rachman
Breast cancer remains one of the most prevalent malignancies among women and is frequently diagnosed at an advanced stage. Early detection is critical to improving patient prognosis and survival rates. Messenger ribonucleic acid (mRNA) gene expression data, which captures the molecular alterations in cancer cells, offers a promising avenue for enhancing diagnostic accuracy. The objective of this study is to develop a machine learning-based model for breast cancer detection using mRNA gene expression profiles. To achieve this, we implemented a hybrid machine learning system (HMLS) that integrates classification algorithms with feature selection and extraction techniques. This approach enables the effective handling of heterogeneous and high-dimensional genomic data, such as mRNA expression datasets, while simultaneously reducing dimensionality without sacrificing critical information. The classification algorithms applied in this study include support vector machine (SVM), random forest (RF), naïve Bayes (NB), k-nearest neighbors (KNN), extra trees classifier (ETC), and logistic regression (LR). Feature selection was conducted using analysis of variance (ANOVA), mutual information (MI), ETC, LR, whereas principal component analysis (PCA) was employed for feature extraction. The performance of the proposed model was evaluated using standard metrics, including recall, F1-score, and accuracy. Experimental results demonstrate that the combination of the SVM classifier with MI feature selection outperformed other configurations and conventional machine learning approaches, achieving a classification accuracy of 99.4%.
Volume: 15
Issue: 4
Page: 3928-3937
Publish at: 2025-08-01

Ensemble of convolutional neural network and DeepResNet for multimodal biometric authentication system

10.11591/ijece.v15i4.pp4279-4295
Ashwini Kailas , Madhusudan Girimallaih , Mallegowda Madigahalli , Vasantha Kumara Mahadevachar , Pranothi Kadirehally Somashekarappa
Multimodal biometrics technology has garnered attention recently for its ability to address inherent limitations found in single biometric modalities and to enhance overall recognition rates. A typical biometric recognition system comprises sensing, feature extraction, and matching modules. The system’s robustness heavily relies on its capability to effectively extract pertinent information from individual biometric traits. This study introduces a novel feature extraction technique tailored for a multimodal biometric system utilizing electrocardiogram (ECG) and iris traits. The ECG helps to incorporate the liveliness related information and Iris helps to produce the unique pattern for each individual. Therefore, this work presents a multimodal authentication system where data pre-processing is performed on image and ECG data where noise removal and quality enhancement tasks are performed. Later, feature extraction is carried out for ECG signals by estimating the Heart rate variability feature analysis in time and frequency domain. Finally, the ensemble of convolution neural network (CNN) and DeepResNet models are used to perform the classification. The overall accuracy is reported as 0.8900, 0.8400, 0.7900, 0.8932, 0.87, and 0.97 by using convolutional neural network-long short-term memory (CNN-LSTM), support vector machine (SVM), random forest (RF), CNN, decision tree (DT), and proposed MBANet approach respectively.
Volume: 15
Issue: 4
Page: 4279-4295
Publish at: 2025-08-01

Enhancing voltage stability of transmission network using proportional integral controlled high voltage direct current system

10.11591/ijece.v15i4.pp3593-3602
Chibuike Peter Ohanu , Uche C. Ogbuefi , Emenike Ejiogu , Tole Sutikno
The contingencies experienced in transmission power networks often lead to unstable voltage profiles, challenging grid reliability and stability. This research aim is to enhance voltage stability using a proportional-integral (PI) controlled high voltage direct current (HVDC) system on a real life 330 kV network. The Newton-Raphson (NR) method is used for power flow analysis of the test network, and stability analysis identified Makurdi bus as the candidate bus for improvement due to its low eigenvalue and damping ratio. Application of a balanced three-phase fault at this bus resulted in a minimum voltage of 0.70 per unit (p.u.), falling outside the statutory voltage limit requirements of 0.95 to 1.05 p.u. The PI-based HVDC system was then applied along the Makurdi to Jos transmission line, which has a low loading capacity. The application of this model optimized the system response to disturbances, significantly improve voltage stability and raised the minimum voltage profile on the network to 0.80 p.u. This demonstrates 10% voltage profile improvement from the base case and reaffirms the effectiveness of the PI-based HVDC system in enhancing voltage stability during major disturbances. This research highlights the potential of integrating control systems into power networks to improve voltage stability and ensure reliable operation, even during large disturbances.
Volume: 15
Issue: 4
Page: 3593-3602
Publish at: 2025-08-01
Show 52 of 1896

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration