Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

28,428 Article Results

Impact of batch size on stability in novel re-identification model

10.11591/ijai.v14.i4.pp2724-2733
Mossaab Idrissi Alami , Abderrahmane Ez-zahout , Fouzia Omary
This research introduces ConvReID-Net, a custom convolutional neural network (CNN) developed for person re-identification (Re-ID) focusing on the batch size dynamics and their effect on training stability. The model architecture consists of three convolutional layers, each followed by batch normalization, dropout, and max-pooling layers for regularization and feature extraction. The final layers include flattened and dense layers, optimizing the extracted features for classification. Evaluated over 50 epochs using early stopping, the network was trained on augmented image data to enhance robustness. The study specifically examines the influence of batch size on model performance, with batch size 64 yielding the best balance between validation accuracy (96.68%) and loss (0.1962). Smaller (batch size 32)and larger (batch size 128) configurations resulted in less stable performance, underscoring the importance of selecting an optimal batch size. These findings demonstrate ConvReID-Net’s potential for real-world Re-ID applications, especially in video surveillance systems. Future work will focus on further hyperparameter tuning and model improvements to enhance training efficiency and stability.
Volume: 14
Issue: 4
Page: 2724-2733
Publish at: 2025-08-01

A novel fuzzy logic based sliding mode control scheme for non-linear systems

10.11591/ijai.v14.i4.pp2676-2688
Abdul Kareem , Varuna Kumara
Sliding mode control (SMC) has been widely used in the control of non-linear systems due to many inherent properties like superposition, multiple isolated equilibrium points, finite escape time, limit cycle, bifurcation. This research proposes super-twisting controller architecture with a varying sliding surface; the sliding surface being adjusted by a simple single input-single output (SISO) fuzzy logic inference system. The proposed super-twisting controller utilizes a varying sliding surface with an online slope update using a SISO fuzzy logic inference system. This rotates sliding surface in the direction of enhancing the dynamic performance of the system without compromising steady state performance and stability. The performance of the proposed controller is compared to that of the basic super-twisting sliding mode (STSM) controller with a fixed sliding surface through simulations for a benchmark non-linear system control system model with parametric uncertainties and disturbances. The simulation results have confirmed that the proposed approach has the improved dynamic performance in terms of faster response than the typical STSM controller with a fixed sliding surface. This improved dynamic performance is achieved without affecting robustness, system stability and level of accuracy in tracking. The proposed control approach is straightforward to implement since the sliding surface slope is regulated by a SISO fuzzy logic inference system. The MATLAB/Simulink is used to display the efficiency of proposed system over conventional system.
Volume: 14
Issue: 4
Page: 2676-2688
Publish at: 2025-08-01

Development and evaluation of a smart home energy management system using internet of things and real-time monitoring

10.11591/ijece.v15i4.pp3977-3985
Mohamed Imran Mohamed Ariff , Nur Anim Abdul Halim , Mohammad Nasir Abdullah , Samsiah Ahmad , Masurah Mohamad , Anis Zafirah Azmi
This project presents the design and implementation of a smart home energy management system using internet of things (IoT) technology to optimize household energy consumption. The system integrates various sensors, including passive infrared (PIR), light dependent resistor (LDR), and DHT11, to collect real-time environmental data, which is processed by a NodeMCU microcontroller. The microcontroller controls home appliances using relays, while the Blynk mobile app and Streamlit web platform provide users with remote monitoring and control capabilities. Despite successfully optimizing energy usage, the system faces limitations such as high sensor sensitivity and potential hazards during high-load power demonstrations. To address these issues, future work proposes integrating additional sensors for improved accuracy and incorporating renewable energy sources for increased sustainability. This project aims to enhance energy efficiency, provide users with greater control over their energy consumption, and contribute to smart home automation by utilizing real-time data, IoT integration, and user-friendly interfaces.
Volume: 15
Issue: 4
Page: 3977-3985
Publish at: 2025-08-01

Examining stressors’ influence on job satisfaction among engineering college faculty: a cross-sectional study

10.11591/ijere.v14i4.30209
Krishnamoorthy V. , Parthasarathy Karthikeyan , Rajini J. , Anandavel V. , Hariharasudan Anandhan
This study explores the various dimensions of stress experienced by engineering college teachers and their impact on job satisfaction. The research specifically examines the relationship between stress factors and job satisfaction among faculty members in engineering colleges in the western region of Tamil Nadu. A cross-sectional research design was used in this study. Data were collected using a structured questionnaire from 210 faculty members between June and December 2023, employing a convenient sampling method. The questionnaire comprised three sections: demographic details, stress dimensions, and job satisfaction variables, which were adapted from previous studies. Reliability testing ensured data consistency and factor analysis identified core stress dimensions. Multiple regression analysis was applied to assess the influence of stress dimensions on job satisfaction, while correlation analysis examined relationships between the variables. The data were analyzed using SPSS version 20. Key findings revealed that organizational climate, role conflict, professional and personal growth, and role ambiguity significantly influence job satisfaction. However, role overload did not show a notable impact. A strong correlation between professional growth and job satisfaction was observed, highlighting a critical area for targeted interventions. These insights provide valuable guidance for policymakers in academic institutions to develop effective strategies to mitigate faculty stress and enhance job satisfaction within the academic environment.
Volume: 14
Issue: 4
Page: 3018-3026
Publish at: 2025-08-01

Human detection in CCTV screenshot using fine-tuning VGG-19

10.11591/ijict.v14i2.pp645-652
Firdaus Angga Dewangga , Abba Suganda Girsang
Closed-circuit television (CCTV) systems have generated a vast amount of visual data crucial for security and surveillance purposes. Effectively categorizing security level types is vital for maintaining asset security effectively. This study proposes a practical approach for classifying CCTV screenshot images using visual geometry group (VGG-19) transfer learning, a convolutional neural network (CNN) classification model that works really well in image classification. The task in classification compromise of categorizing screenshots into two classes: “humans present” and “no humans present.” Fine-tuning VGG-19 model attained 98% training accuracy, 98% validation accuracy, and 85% test accuracy for this classification. To evaluate its performance, we compared fine-tuning VGG-19 model with another method. The VGG-19-based fine-tuning model demonstrates effectiveness in handling image screenshots, presenting a valuable tool for CCTV image classification and contributing to the enhancement of asset security strategies.
Volume: 14
Issue: 2
Page: 645-652
Publish at: 2025-08-01

Load frequency control for integrated hydro and thermal power plant power system

10.11591/ijece.v15i4.pp3583-3592
Vu Tan Nguyen , Thinh Lam-The Tran , Dao Huy Tuan , Dinh Cong Hien , Vinh Phuc Nguyen , Van Van Huynh
Persistent electrical supply requires the power systems to be stable and reliable. Against varying load conditions, control strategies such as load frequency control (LFC) is a key mechanism to protect its stability. Traditional control strategies for LFC often face challenges due to system uncertainties, external disturbances, and nonlinearities. This paper presents an advanced approach to control load frequency and enhancing LFC in power systems by using sliding mode control (SMC). SMC offers powerful stability and robustness versus nonlinearities and perturbation, making it a promising approach for addressing the limitations of conventional control methods. We contemporary a comprehensive analysis of the SMC approach tailored for LFC, including the strategy and employment of the control algorithm. The proposed method makes use of a sliding/gliding surface to enable the system trajectories to be continuous on this surface despite parameter variations and external disturbances. Simulation results demonstrate significant improvements in frequency stability and system performance compared to conventional proportional-integral-derivative (PID) controllers. The paper also includes a comparative analysis of SMC with other modern control techniques, highlighting its advantages in terms of robustness and adaptability.
Volume: 15
Issue: 4
Page: 3583-3592
Publish at: 2025-08-01

Assessing the knowledge and practices of internet of things security and privacy among higher education students

10.11591/ijece.v15i4.pp4074-4086
Aigul Adamova , Tamara Zhukabayeva , Makpal Zhartybayeva , Laula Zhumabayeva
When multiple internet of things (IoT) devices interact, there are risks of privacy breaches, personal data leaks, various attacks, and device manipulation. Security is one of the most important technological research problems that currently exist for the IoT. The main purpose of the present paper is to determine the level of awareness of university students about existing security issues when using IoT devices. The paper presented the methodology of the survey. A questionnaire was developed covering four areas, such as fact-finding about general concepts of the IoT, security measures when using IoT devices, security threats and the presence of vulnerabilities of IoT devices, general policies, practices and shared responsibilities. A methodology for calculating the Awareness Level Index is proposed. This study has potential limitations. The effect estimates in the model are based on a survey of undergraduate and master’s degree students in “Computer Science” and “Software Engineering” within several universities. A total of 370 undergraduate and master’s students participated in the survey. The data processing resulted in the development of recommendations and suggested measures. This study will be useful for both stakeholders and researchers to develop effective strategies and make informed decisions.
Volume: 15
Issue: 4
Page: 4074-4086
Publish at: 2025-08-01

Energy-efficient secure software-defined networking with reinforcement learning and Weierstrass cryptography

10.11591/ijece.v15i4.pp4227-4238
Nagaraju Tumakuru Andanaiah , Malode Vishwanatha Panduranga Rao
In the age of rapidly advancing 5G connectivity, artificial intelligence (AI), and the internet of things (IoT), network data has grown enormously, demanding more efficient and secure management solutions. Traditional networking systems, limited by manual controls and static environments, are unable to fulfill the dynamic demands of modern internet services. This paper proposes an innovative software-defined networking (SDN) framework that utilizes exponential spline regression reinforcement learning (ESR-RL) with genus Weierstrass curve cryptography (GWCC) to boost energy efficiency and data security. The ESR-RL algorithm reliably anticipates network traffic patterns, optimizing path selection to enhance routing efficiency while minimizing consumption of energy. GWCC also enables strong encryption and decryption, considerably increasing data security without impacting system performance. To further improve network reliability, the Skellam distributed Siberian TIGER optimization algorithm (SDSTOA) is used to dynamically acquire features and balance loads, resulting in optimal network performance. Extensive simulations show that the proposed framework performs better than existing models in terms of accuracy, precision, recall, F-measure, sensitivity, and specificity. Improvements in latency, turnaround time, and network throughput demonstrate the framework's success. This scalable and adaptive technology establishes a new standard for SDN systems by providing a safe, energy-efficient, and performance-optimized strategy for future network infrastructures.
Volume: 15
Issue: 4
Page: 4227-4238
Publish at: 2025-08-01

Near-infrared spectroscopy and machine learning to detect olive oil type: a systematic review

10.11591/ijece.v15i4.pp4120-4132
Leonardo Ledesma Ortecho , Enrique Romero José , Christian Ovalle , Heli Alejandro Cordova Berona
The present study evaluates the effectiveness of visible/near-infrared spectroscopy (VIS/NIR) combined with machine learning in olive oil type detection. A search strategy based on the population, intervention, comparison, and outcome (PICO) framework was employed to formulate specific equations used in Scopus, ScienceDirect, and PubMed databases. After applying exclusion criteria, 53 studies were included in the review following preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. The reviewed studies demonstrate that VIS/NIR spectroscopy coupled with machine learning allows rapid and accurate identification of different types of olive oil, highlighting the detection of fatty acids, polyphenols, and other vital compounds. However, variability in samples and processing conditions present significant challenges. Although the results are promising, further research is required to fully validate the efficacy and feasibility of this technology in industrial settings. This review provides a comprehensive overview of the advances, challenges, and opportunities in this field, highlighting the need to optimize machine learning models and standardize analysis procedures for practical application in the food industry.
Volume: 15
Issue: 4
Page: 4120-4132
Publish at: 2025-08-01

Deep feature representation for automated plant species classification from leaf images

10.11591/ijece.v15i4.pp3759-3768
Nikhil Inamdar , Manjunath Managuli , Uttam Patil
Automated plant species classification using leaf images holds immense potential for advancing agricultural research, biodiversity conservation, and ecological monitoring. This study introduces a novel approach leveraging deep feature representation to achieve accurate and efficient classification based on leaf morphology. Convolutional neural networks (CNNs), including VGG16, ResNet50, DenseNet1, Inception, and Xception, are employed to extract high-level features from leaf images, capturing intricate patterns essential for species differentiation. To manage the extensive feature set extracted by these models, optimization techniques such as principal component analysis (PCA), variance thresholding, and recursive feature elimination (RFE) are applied. These methods streamline the feature set, making the classification process more efficient. The optimized features are then trained using classifiers like support vector machine (SVM), k-nearest neighbors (K-NN), decision trees (DT), and naive Bayes (NB), achieving average accuracies of 98.6%, 96.6%, 99.6%, and 99.7%, respectively, across various cross-validation methods. Experimental results on benchmark datasets demonstrate the effectiveness of this approach, achieving state-of-the-art performance in plant species classification. This work underscores the potential of deep feature representation in automated plant species classification, offering valuable insights for applications in agriculture, ecology, and environmental science.
Volume: 15
Issue: 4
Page: 3759-3768
Publish at: 2025-08-01

A comparative study of deep learning-based network intrusion detection system with explainable artificial intelligence

10.11591/ijece.v15i4.pp4109-4119
Tan Juan Kai , Lee-Yeng Ong , Meng-Chew Leow
In the rapidly evolving landscape of cybersecurity, robust network intrusion detection systems (NIDS) are crucial to countering increasingly sophisticated cyber threats, including zero-day attacks. Deep learning approaches in NIDS offer promising improvements in intrusion detection rates and reduction of false positives. However, the inherent opacity of deep learning models presents significant challenges, hindering the understanding and trust in their decision-making processes. This study explores the efficacy of explainable artificial intelligence (XAI) techniques, specifically Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), in enhancing the transparency and trustworthiness of NIDS systems. With the implementation of TabNet architecture on the AWID3 dataset, it is able to achieve a remarkable accuracy of 99.99%. Despite this high performance, concerns regarding the interpretability of the TabNet model's decisions persist. By employing SHAP and LIME, this study aims to elucidate the intricacies of model interpretability, focusing on both global and local aspects of the TabNet model's decision-making processes. Ultimately, this study underscores the pivotal role of XAI in improving understanding and fostering trust in deep learning -based NIDS systems. The robustness of the model is also being tested by adding the signal-to-noise ratio (SNR) to the datasets.
Volume: 15
Issue: 4
Page: 4109-4119
Publish at: 2025-08-01

Enhanced n-party Diffie Hellman key exchange algorithm using the divide and conquer algorithm

10.11591/ijict.v14i2.pp438-445
Nwanze Chukwudi Ashioba , Patrick Ogholorunwalomi Ejeh , Azaka Maduabuchuku
Cryptographic algorithms guarantee data and information security via a communication system against unauthorized users or intruders. Numerous encryption techniques have been employed to safeguard this data and information from hackers. By supplying a distinct shared secret key, the n-party Diffie Hellman key exchange approach has been used to protect data from hackers. Using a quadratic time complexity, the n-party Diffie-Hellman method is slow when multiple users use the cryptographic key interchange system. To solve this issue, the researchers created an effective shared hidden key for the n-party Diffie Hellman key exchange of a cryptographic system using the divide-and-conquer strategy. The current research recommends the use of the divide and conquer algorithm, which breaks down the main problem into smaller subproblems until it reaches the base solution, which is then merged to generate the solution of the main problem. The comparative analysis indicates that the developed system generates a shared secret key faster than the current n-party Diffie Hellman system.
Volume: 14
Issue: 2
Page: 438-445
Publish at: 2025-08-01

Techno-economic analysis of a 4 MW solar photovoltaic capacity expansion in a remote Indonesian village

10.11591/ijece.v15i4.pp4133-4147
Agie Maliki Akbar , Fahmy Rinanda Saputri , David Tee
As of the end of 2022, Indonesia’s electrification ratio reached 99.63%, reflecting significant progress. However, the province of East Nusa Tenggara lags behind with an electrification ratio below 90%, indicating a considerable gap in energy access. This challenge is particularly evident in Oelpuah village, where frequent power outages occur due to the inadequacy of the existing 5 MW solar farm. This study proposes addressing this shortfall by expanding the solar farm capacity by an additional 4 MW. Comprehensive feasibility studies were conducted, evaluating solar radiation, natural disaster risks, and land use. The analysis, supported by PVSyst simulations, identified a suitable site with high radiation levels, though it is not entirely free from disaster risks. The design requires 13,500 solar panel modules, each with a capacity of 330 Wp, and seven 500 kW inverters. Optimal system performance is achieved with a 15-degree panel tilt and a 0-degree azimuth, aligning with the site's location south of the equator. This expansion could supply electricity to up to 4,014 households, each with a typical power usage of 0.825 kW. The study highlights the need for further research to enhance electricity coverage across Indonesia.
Volume: 15
Issue: 4
Page: 4133-4147
Publish at: 2025-08-01

Secure clustering and routing – based adaptive – bald eagle search for wireless sensor networks

10.11591/ijece.v15i4.pp3824-3832
Roopashree Hejjaji Ranganathasharma , Yogeesh Ambalagere Chandrashekaraiah
Wireless sensor networks (WSNs) are self-regulating networks consisting of several tiny sensor nodes for monitoring and tracking applications over extensive areas. Energy consumption and security are the two significant challenges in these networks due to their limited resources and open nature. To address these challenges and optimize energy consumption while ensuring security, this research proposes an adaptive – bald eagle search (A-BES) optimization algorithm enabled secure clustering and routing for WSNs. The A-BES algorithm selects secure cluster heads (SCHs) through several fitness functions, thereby reducing energy consumption across the nodes. Next, secure and optimal routes are chosen using A-BES to prevent malicious nodes from interfering with the communication paths and to enhance the overall network lifetime. The proposed algorithm shows significantly lower energy consumption, with values of 0.27, 0.81, 1.38, 2.27, and 3.01 J as the number of nodes increases from 100 to 300. This demonstrates a clear improvement over the existing residual energy-based data availability approach (REDAA).
Volume: 15
Issue: 4
Page: 3824-3832
Publish at: 2025-08-01

Efficient high-gain low-noise amplifier topologies using GaAs FET at 3.5 GHz for 5G systems

10.11591/ijece.v15i4.pp3833-3842
Samia Zarrik , Abdelhak Bendali , Elmahdi Fadlaoui , Karima Benkhadda , Sanae Habibi , Mouad El Kobbi , Zahra Sahel , Mohamed Habibi , Abdelkader Hadjoudja
Achieving a gain greater than 18 dB with a noise figure (NF) below 2 dB at 3.5 GHz remains a formidable challenge for low-noise amplifiers (LNAs) in sub-6 GHz 5G systems. This study explores and evaluates various LNA topologies, including single-stage designs with inductive source degeneration and cascade configurations, to optimize performance. The single-stage topology with inductive source degeneration achieves a gain of 18.141 dB and an NF of 1.448 dB, while the cascade-stage common-source low-noise amplifier with inductive degeneration achieves a gain of 32.714 dB and a noise figure of 1.563 dB. These results underscore the importance of GaAs FET technology in meeting the demanding requirements of 5G systems, specifically in the 3.5 GHz frequency band. The advancements demonstrated in gain, noise figure, and linearity affirm the viability of optimized LNA topologies for high-performance 5G applications, supporting improved signal quality and reliability essential for modern telecommunication infrastructure.
Volume: 15
Issue: 4
Page: 3833-3842
Publish at: 2025-08-01
Show 51 of 1896

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration