Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

28,428 Article Results

Cyber-physical resilience system for anomaly detection in industrial environments

10.11591/ijict.v14i2.pp497-505
Debani Prasad Mishra , Rakesh Kumar Lenka , Rampa Sri Sai Yagyna Duthsharma , Pavan Kumar , Lakshay Bhardwaj , Surender Reddy Salkuti
This work explores the topic of cybersecurity in the context of electric vehicles (EVs). It ensures the resilience of cyber-physical systems against anomalies, which is paramount for maintaining operational efficiency and safety. This paper presents a cyber-physical resilience system (CPRS) customized for anomaly detection. Maintaining operational efficiency and safety in today’s networked industrial contexts requires that cyber-physical systems be resilient to abnormalities. With an emphasis on EVs, this research introduces a unique CPRS designed for anomaly detection in industrial settings. By utilizing the combination of digital and physical elements, the CPRS uses sophisticated monitoring and reaction systems to identify and address irregularities instantly. The process includes creating algorithms for anomaly detection and putting in place a framework that is responsive enough to change with the dangers that it faces. The efficiency of the CPRS in detecting unusual behaviors in EVs is demonstrated by experimental findings, which also improve the overall resilience of the system. Moreover, the research’s ramifications go beyond EVs to include a variety of industrial settings, providing valuable information for the development and execution of resilient cyber-physical systems. This paper highlights the significance of proactive resilience measures in protecting critical infrastructure and advances anomaly detection approaches.
Volume: 14
Issue: 2
Page: 497-505
Publish at: 2025-08-01

Exploring the recurrent and sequential security patch data using deep learning approaches

10.11591/ijece.v15i4.pp4160-4171
Falah Muhammad Alam , Devi Fitrianah
The ever-changing nature of vulnerabilities and the intricacy of temporal connections make the classification of security patch data, both sequential and recurrent, a formidable challenge in cybersecurity. The goal of this research is to improve the efficacy and precision of security patch management by optimizing deep learning models to deal with these issues. In order to assess their performance on the PatchDB dataset, four models were used: recurrent neural networks (RNN), long short-term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM (Bi-LSTM). Metrics like F1-score, area under the receiver operating characteristic curve (AUC-ROC), recall, accuracy, and precision were used to evaluate performance. When it came to processing sequential data, the GRU model was the most efficient, with the best accuracy (77.39%), recall (65.63%), and AUC-ROC score (0.8127). With a 75.17% accuracy rate and an AUC-ROC score of 0.7752, the RNN model successfully reduced false negatives. With AUC-ROC scores of 0.7792 and 0.8055, respectively, LSTM and Bi-LSTM had better specificity but more false negatives. To improve cybersecurity operations, decrease mitigation time, and automate the classification of security updates, this study presents a methodology. To improve the models' practicality, future efforts will center on increasing datasets and testing them in real-world settings.
Volume: 15
Issue: 4
Page: 4160-4171
Publish at: 2025-08-01

Design strategies for solar photovoltaic integration in rural areas

10.11591/ijece.v15i4.pp3603-3612
Intan Mastura Saadon , Emy Zairah Ahmad , Nurbahirah Norddin , Norain Idris
This study explores the optimization of photovoltaic (PV) systems in the Sungai Tiang Camp region, Malaysia, with a focus on determining the ideal tilt angles to maximize energy generation in a tropical environment while incorporating a cost analysis. While existing studies optimize tilt angles for energy maximization in temperate regions, this study addresses the unique climatic and socio-economic conditions of rural Malaysia. Unlike fixed-tilt assumptions common in prior work, this research explores cost-effective, manually adjustable systems tailored for local weather patterns and rural affordability. To address this, the study examines the relationship between tilt angle, solar irradiance, temperature and output power. The results are analyzed to identify optimal configurations. Results reveal that tilt angles between 5° and 10° deliver the highest energy output, with slight seasonal adjustments for efficiency improvement. These findings align with Malaysia's tropical solar profile, offering practical insights for micro-scale solar deployments in similar climates. By addressing the unique needs of remote areas, this research contributes to bridging the gap in localized PV studies. Its outcomes not only enhance the understanding of solar PV performance in tropical conditions but also provide valuable guidelines for rural electrification and sustainable energy solutions in equatorial regions worldwide.
Volume: 15
Issue: 4
Page: 3603-3612
Publish at: 2025-08-01

Deep feature representation for automated plant species classification from leaf images

10.11591/ijece.v15i4.pp3759-3768
Nikhil Inamdar , Manjunath Managuli , Uttam Patil
Automated plant species classification using leaf images holds immense potential for advancing agricultural research, biodiversity conservation, and ecological monitoring. This study introduces a novel approach leveraging deep feature representation to achieve accurate and efficient classification based on leaf morphology. Convolutional neural networks (CNNs), including VGG16, ResNet50, DenseNet1, Inception, and Xception, are employed to extract high-level features from leaf images, capturing intricate patterns essential for species differentiation. To manage the extensive feature set extracted by these models, optimization techniques such as principal component analysis (PCA), variance thresholding, and recursive feature elimination (RFE) are applied. These methods streamline the feature set, making the classification process more efficient. The optimized features are then trained using classifiers like support vector machine (SVM), k-nearest neighbors (K-NN), decision trees (DT), and naive Bayes (NB), achieving average accuracies of 98.6%, 96.6%, 99.6%, and 99.7%, respectively, across various cross-validation methods. Experimental results on benchmark datasets demonstrate the effectiveness of this approach, achieving state-of-the-art performance in plant species classification. This work underscores the potential of deep feature representation in automated plant species classification, offering valuable insights for applications in agriculture, ecology, and environmental science.
Volume: 15
Issue: 4
Page: 3759-3768
Publish at: 2025-08-01

Load frequency control for integrated hydro and thermal power plant power system

10.11591/ijece.v15i4.pp3583-3592
Vu Tan Nguyen , Thinh Lam-The Tran , Dao Huy Tuan , Dinh Cong Hien , Vinh Phuc Nguyen , Van Van Huynh
Persistent electrical supply requires the power systems to be stable and reliable. Against varying load conditions, control strategies such as load frequency control (LFC) is a key mechanism to protect its stability. Traditional control strategies for LFC often face challenges due to system uncertainties, external disturbances, and nonlinearities. This paper presents an advanced approach to control load frequency and enhancing LFC in power systems by using sliding mode control (SMC). SMC offers powerful stability and robustness versus nonlinearities and perturbation, making it a promising approach for addressing the limitations of conventional control methods. We contemporary a comprehensive analysis of the SMC approach tailored for LFC, including the strategy and employment of the control algorithm. The proposed method makes use of a sliding/gliding surface to enable the system trajectories to be continuous on this surface despite parameter variations and external disturbances. Simulation results demonstrate significant improvements in frequency stability and system performance compared to conventional proportional-integral-derivative (PID) controllers. The paper also includes a comparative analysis of SMC with other modern control techniques, highlighting its advantages in terms of robustness and adaptability.
Volume: 15
Issue: 4
Page: 3583-3592
Publish at: 2025-08-01

An analysis between the Welsh-Powell and DSatur algorithms for coloring of sparse graphs

10.11591/ijece.v15i4.pp3867-3875
Radoslava Kraleva , Velin Kralev , Toma Katsarski
In this research an analysis between the Welsh-Powell and DSatur algorithms for the graph vertex coloring problem was presented. Both algorithms were implemented and analyzed as well. The method of the experiment was discussed and the 46 test graphs, which were divided into two sets, were presented. The results show that for sparse graphs with a smaller number of vertices and edges, both algorithms can be used for solving the problem. The results show that in 50% of the cases the Welsh-Powell algorithm found better solutions (23 in total). So, the DSatur algorithm found better solutions in only 19.6% of cases (9 in total). In the remaining 30.4% of cases, both algorithms found identical solutions. For graphs with a larger number of vertices, the usage of the Welsh-Powell algorithm is recommended as it finds better solutions. The execution time of the DSatur algorithm is greater than the execution time of the Welsh-Powell algorithm, reaching up to a minute for graphs with a larger number of vertices. For graphs with fewer vertices and edges, the execution times of both algorithms are shorter, but the time is still greater for the DSatur algorithm.
Volume: 15
Issue: 4
Page: 3867-3875
Publish at: 2025-08-01

Assessing the knowledge and practices of internet of things security and privacy among higher education students

10.11591/ijece.v15i4.pp4074-4086
Aigul Adamova , Tamara Zhukabayeva , Makpal Zhartybayeva , Laula Zhumabayeva
When multiple internet of things (IoT) devices interact, there are risks of privacy breaches, personal data leaks, various attacks, and device manipulation. Security is one of the most important technological research problems that currently exist for the IoT. The main purpose of the present paper is to determine the level of awareness of university students about existing security issues when using IoT devices. The paper presented the methodology of the survey. A questionnaire was developed covering four areas, such as fact-finding about general concepts of the IoT, security measures when using IoT devices, security threats and the presence of vulnerabilities of IoT devices, general policies, practices and shared responsibilities. A methodology for calculating the Awareness Level Index is proposed. This study has potential limitations. The effect estimates in the model are based on a survey of undergraduate and master’s degree students in “Computer Science” and “Software Engineering” within several universities. A total of 370 undergraduate and master’s students participated in the survey. The data processing resulted in the development of recommendations and suggested measures. This study will be useful for both stakeholders and researchers to develop effective strategies and make informed decisions.
Volume: 15
Issue: 4
Page: 4074-4086
Publish at: 2025-08-01

Automated rice leaf disease detection using artificial intelligence deep learning

10.11591/ijict.v14i2.pp405-415
Suhaila M. P. , Hemalatha S.
As one of the top five rice-producing countries, India relies heavily on rice for both economic management and food needs. To ensure healthy rice plant growth, early detection of diseases and timely treatment are essential. Since manual disease detection is time-consuming and labor-intensive, an automated approach is more practical. This work presents a deep neural network (DNN)-based artificial intelligence (AI) method for recognizing rice leaf diseases. The method detects three common diseases: leaf smut, bacterial leaf blight, and brown spot, as well as healthy images. The approach uses an AI-based attention network and semantic batch normalized DeepNet (AN-SBNDN) combined with a channel attention mechanism to improve disease detection accuracy. Experiments with rice leaf datasets and comparison with conventional networks like residual attention network (Res ATTEN) and dynamic speeded up robust features (DSURF) validate the effectiveness of the method. Key performance metrics include average accuracy, time, precision, and recall, achieved at 21%, 44%, 26%, and 31%, respectively.
Volume: 14
Issue: 2
Page: 405-415
Publish at: 2025-08-01

Prediction and classification of diabetic retinopathy using machine learning techniques

10.11591/ijict.v14i2.pp516-528
Makhlouf Chaouki , Mohamed Ridda Laouar , Abbas Cheddad , Bourougaa Salima , Sean Eom
Diabetic retinopathy (DR) is a progressive and sight-threatening complication of diabetes mellitus, characterized by damage to the blood vessels in the retina. Early detection of DR is vital for timely intervention and effective management to prevent irreversible vision loss. This paper provides a comprehensive review of recent advancements in integrating machine learning (ML) and deep learning (DL) techniques for diagnosing DR, aiming to assist ophthalmologists in their manual diagnostic process. The paper presents a comprehensive definition of DR, elucidating the underlying pathological processes, clinical signs, and the various stages of DR classification, ranging from mild non-proliferative to severe proliferative DR. Integrating ML and DL in DR diagnosis has developed the field by offering automated and efficient methods and techniques to analyze retinal images. With high sensitivity and specificity, these techniques demonstrate their efficacy in accurately identifying DR-related lesions, such as microaneurysms, exudates, and hemorrhages. Furthermore, the paper examines diverse datasets employed in training and evaluating ML and DL models for DR diagnosis. These datasets range from publicly available repositories to specialized datasets curated by medical institutions. The role of large-scale and diverse datasets in enhancing model robustness and generalizability is emphasized.
Volume: 14
Issue: 2
Page: 516-528
Publish at: 2025-08-01

A comparative study of deep learning-based network intrusion detection system with explainable artificial intelligence

10.11591/ijece.v15i4.pp4109-4119
Tan Juan Kai , Lee-Yeng Ong , Meng-Chew Leow
In the rapidly evolving landscape of cybersecurity, robust network intrusion detection systems (NIDS) are crucial to countering increasingly sophisticated cyber threats, including zero-day attacks. Deep learning approaches in NIDS offer promising improvements in intrusion detection rates and reduction of false positives. However, the inherent opacity of deep learning models presents significant challenges, hindering the understanding and trust in their decision-making processes. This study explores the efficacy of explainable artificial intelligence (XAI) techniques, specifically Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), in enhancing the transparency and trustworthiness of NIDS systems. With the implementation of TabNet architecture on the AWID3 dataset, it is able to achieve a remarkable accuracy of 99.99%. Despite this high performance, concerns regarding the interpretability of the TabNet model's decisions persist. By employing SHAP and LIME, this study aims to elucidate the intricacies of model interpretability, focusing on both global and local aspects of the TabNet model's decision-making processes. Ultimately, this study underscores the pivotal role of XAI in improving understanding and fostering trust in deep learning -based NIDS systems. The robustness of the model is also being tested by adding the signal-to-noise ratio (SNR) to the datasets.
Volume: 15
Issue: 4
Page: 4109-4119
Publish at: 2025-08-01

Near-infrared spectroscopy and machine learning to detect olive oil type: a systematic review

10.11591/ijece.v15i4.pp4120-4132
Leonardo Ledesma Ortecho , Enrique Romero José , Christian Ovalle , Heli Alejandro Cordova Berona
The present study evaluates the effectiveness of visible/near-infrared spectroscopy (VIS/NIR) combined with machine learning in olive oil type detection. A search strategy based on the population, intervention, comparison, and outcome (PICO) framework was employed to formulate specific equations used in Scopus, ScienceDirect, and PubMed databases. After applying exclusion criteria, 53 studies were included in the review following preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. The reviewed studies demonstrate that VIS/NIR spectroscopy coupled with machine learning allows rapid and accurate identification of different types of olive oil, highlighting the detection of fatty acids, polyphenols, and other vital compounds. However, variability in samples and processing conditions present significant challenges. Although the results are promising, further research is required to fully validate the efficacy and feasibility of this technology in industrial settings. This review provides a comprehensive overview of the advances, challenges, and opportunities in this field, highlighting the need to optimize machine learning models and standardize analysis procedures for practical application in the food industry.
Volume: 15
Issue: 4
Page: 4120-4132
Publish at: 2025-08-01

Cloud application design for financial reporting in Indonesia’s small and medium enterprises

10.11591/ijict.v14i2.pp457-466
Erin Erin , Anderes Gui
Small and medium enterprises (SMEs) in Indonesia are increasingly developing, but the application of information technology (IT) in small medium businesses is still lacking because for small medium business owners, doing their own bookkeeping without a system will maximize profits. However, this makes bookkeeping ineffective and inefficient because it requires manual data input and reconciliation. Utilizing a cloud-based accounting information system (CAIS) can integrate data, increase productivity, and minimize infrastructure costs because there is no need to provide costs for physical infrastructure. In this research, CAIS was designed to produce financial reports that focus on small medium businesses in Indonesia. The method used is a qualitative method by conducting observations through literature study for data collection and the rational unified process (RUP) which is limited to the elaboration stage to produce a prototype design. So, the result of this paper is a system design that can be used as a guide to continue with system development. This system aims to simplify transaction records so that they can be more efficient and effective in producing financial reports. The use of CAIS is also expected to increase profits and maximize the use of internet and technology in small medium businesses.
Volume: 14
Issue: 2
Page: 457-466
Publish at: 2025-08-01

Optimized reactive power management system for smart grid architecture

10.11591/ijece.v15i4.pp3707-3716
Manju Jayakumar Raghvin , Manjula R. Bharamagoudra , Ritesh Dash
The Indian power grid is an extensive and mature power system that transfers large amounts of electricity between two regions linked by a power corridor. The increased reliance on decentralized renewable energy sources (RESs), such as solar power, has led to power system instability and voltage variations. Power quality and dependability in a smart grid (SG) setting can be enhanced by the careful tracking and administration of solar energy generated by panels. This study proposes a number of reactive power regulation algorithms that take smart grids into account. When developing a kernel, debugging is a must in optimal reactive power management. In this research, a debugging primitive called physical memory protection (PMP), a security feature, is considered. Debugging in the kernel domain requires specialized tools, in contrast to the user space where we have kernel assistance. This research proposes an optimal reactive power management in smart grid using kernel debugging model (ORPM-SG-KDM) for managing the reactive power efficiently. This research achieved 98.5% accuracy in kernel debugging and 99.2% accuracy in optimal reactive power management. Kernel debugging accuracy is increased by 1.8% and 3% of reactive power management accuracy is increased.
Volume: 15
Issue: 4
Page: 3707-3716
Publish at: 2025-08-01

Energy-efficient secure software-defined networking with reinforcement learning and Weierstrass cryptography

10.11591/ijece.v15i4.pp4227-4238
Nagaraju Tumakuru Andanaiah , Malode Vishwanatha Panduranga Rao
In the age of rapidly advancing 5G connectivity, artificial intelligence (AI), and the internet of things (IoT), network data has grown enormously, demanding more efficient and secure management solutions. Traditional networking systems, limited by manual controls and static environments, are unable to fulfill the dynamic demands of modern internet services. This paper proposes an innovative software-defined networking (SDN) framework that utilizes exponential spline regression reinforcement learning (ESR-RL) with genus Weierstrass curve cryptography (GWCC) to boost energy efficiency and data security. The ESR-RL algorithm reliably anticipates network traffic patterns, optimizing path selection to enhance routing efficiency while minimizing consumption of energy. GWCC also enables strong encryption and decryption, considerably increasing data security without impacting system performance. To further improve network reliability, the Skellam distributed Siberian TIGER optimization algorithm (SDSTOA) is used to dynamically acquire features and balance loads, resulting in optimal network performance. Extensive simulations show that the proposed framework performs better than existing models in terms of accuracy, precision, recall, F-measure, sensitivity, and specificity. Improvements in latency, turnaround time, and network throughput demonstrate the framework's success. This scalable and adaptive technology establishes a new standard for SDN systems by providing a safe, energy-efficient, and performance-optimized strategy for future network infrastructures.
Volume: 15
Issue: 4
Page: 4227-4238
Publish at: 2025-08-01

A hybrid framework for enhanced intrusion detection in cloud environments leveraging autoencoder

10.11591/ijict.v14i2.pp555-564
Abinaya Alagarsamy , Thenmozhi Elumalai , S. P. Ramesh , Tamilarasi Karuppiah , Prabu Kaliyaperumal , Rajakumar Perumal
In today’s world, the significance of network security and cloud environments has grown. The rising demand for data transmission, along with the versatility of cloud-based solutions and widespread availability of global resources, are key drivers of this growth. In response to rapidly evolving threats and malicious attacks, developing a robust intrusion detection system (IDS) is essential. This study addresses the imbalanced data and utilizes an unsupervised learning approach to protect network data. The suggested hybrid framework employs the CIC-IDS2017 dataset, integrating methods for handling imbalanced data with unsupervised learning to enhance security. Following preprocessing, principal component analysis (PCA) reduces the dimensionality from eighty features to twenty-three features. The extracted features are input into density-based spatial clustering of applications with noise (DBSCAN), a clustering algorithm. particle swarm optimization (PSO) optimizes DBSCAN, grouping similar traffic and enhancing classification. To address the imbalances in the learning process, the autoencoder (AE) algorithm demonstrates unsupervised learning. The data from the cluster is input into the AE, a deep learning algorithm, which classifies traffic as normal or an attack. The proposed approach (PCA+DBSCAN+AE) attains remarkable intrusion detection accuracy exceeding 98%, and outperforms five contemporary methodologies.
Volume: 14
Issue: 2
Page: 555-564
Publish at: 2025-08-01
Show 50 of 1896

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration