Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

29,061 Article Results

An artificial intelligent system for cotton leaf disease detection

10.11591/ijict.v14i3.pp950-959
Priyanka Nilesh Jadhav , Pragati Prashant Patil , Nitesh Sureja , Nandini Chaudhari , Heli Sureja
This study aims to develop a deep learning-based system for the detection and classification of diseases in cotton leaves, with the goal of aiding in early diagnosis and disease management, thereby enhancing agricultural productivity in India. The study utilizes a dataset of cotton leaf images, classified into four categories: Fusarium wilt, Curl virus, Bacterial blight, and Healthy leaves. The dataset is used to train and evaluate various CNN models such as basic CNN, VGG19, Xception, InceptionV3, and ResNet50. These models were evaluated on their accuracy in identifying the presence of diseases and classifying cotton leaf images into the respective categories. The models were trained using standard deep learning frameworks and optimized for high performance. The results indicated that ResNet50 achieved the highest accuracy of 100%, followed by InceptionV3 with 98.75%, and VGG19 and Xception both with 97.50%. The basic CNN model showed an accuracy of 96.25%. These models demonstrated strong potential for accurate multi-class classification of cotton leaf diseases. This study emphasizes the potential of deep learning in agricultural diagnostics. Future research can focus on improving model robustness, incorporating larger datasets, and deploying the system for real-time field use to assist farmers in disease management and improving cotton production.
Volume: 14
Issue: 3
Page: 950-959
Publish at: 2025-12-01

6G internet of things networks for remote location surgery also a review on resource optimization strategies, challenges, and future directions

10.11591/ijece.v15i6.pp5968-5977
Md Asif , Tan Kaun Tak , Pravin R. Kshirsagar
Remote location surgery presents stringent requirements for wireless communication, particularly in terms of reliability, speed, and low latency. The emergence of sixth-generation (6G) wireless networks is expected to address these challenges effectively. With the rapid expansion of internet of things (IoT) applications in healthcare, maintaining real-time connectivity has become essential. Ensuring such performance in 6G-enabled IoT networks relies heavily on the implementation of advanced resource optimization techniques. Recent studies have focused on improving key performance metrics, including latency, reliability, energy efficiency, spectral efficiency, data rate, and bandwidth usage. Comprehensive reviews of these techniques reveal a growing emphasis on multi-objective optimization strategies to balance conflicting requirements. Research has also highlighted limitations in existing approaches, suggesting the need for further innovation, particularly for mission-critical applications like remote surgery. Within this context, 6G IoT systems have demonstrated the potential to maintain high data rates and stable throughput, both of which are essential for safe and responsive surgical operations conducted over long distances. These findings underscore the importance of continued development in resource management to fully enable remote healthcare delivery through advanced wireless technologies.
Volume: 15
Issue: 6
Page: 5968-5977
Publish at: 2025-12-01

Image-based assessment of cattle manure-induced soil erosion in grazing systems

10.11591/ijece.v15i6.pp5360-5370
Cristian Gómez-Guzmán , Yeison Alberto Garcés-Gómez
Extensive livestock farming significantly impacts soil erosion, necessitating accurate monitoring and assessment to mitigate environmental damage and enhance sustainable pasture management. This study employs unsupervised classification of high-resolution drone imagery to detect and quantify soil erosion associated with cattle manure in pastures, focusing on evaluating classification algorithms, identifying relevant spectral and textural features, and quantifying the extent and severity of erosion. The results demonstrate the effectiveness of unsupervised classification in identifying erosion zones and their impact on soil health and water quality. Field validation confirms the accuracy of the analysis, emphasizing the need for sustainable management practices such as controlled manure redistribution and soil conservation to mitigate erosion and protect natural resources. This approach offers practical tools for mitigating the environmental impacts of semi-extensive livestock farming and promoting more sustainable management. The findings provide practical recommendations for sustainable pasture management, contributing to environmental conservation and the long-term health of live-stock systems.
Volume: 15
Issue: 6
Page: 5360-5370
Publish at: 2025-12-01

Optimizing parameter selection in bidirectional encoder portrayal for transformers algorithm using particle swarm optimization for artificial intelligence generate essay detection

10.11591/ijece.v15i6.pp5543-5554
Tegar Arifin Prasetyo , Rudy Chandra , Wesly Mailander Siagian , Horas Marolop Amsal Siregar , Samuel Jefri Saputra Siahaan
This research proposes a novel method for detecting artificial intelligence (AI)-generated essays by integrating the bidirectional encoder representations from transformers (BERT) model with particle swarm optimization (PSO). Unlike traditional approaches that rely on manual hyperparameter tuning, this study introduces a systematic optimization technique using PSO to improve BERT’s performance in identifying AI-generated content. The key problem addressed is the lack of effective, real-time detection systems that preserve academic integrity amidst rapid AI advancements. This optimization enhances the model’s detection accuracy and operational efficiency. The research dataset consisted of 46,246 essays, which, after data cleaning, were refined to 44,868. The model was then tested on 9,250 essays. Initial evaluations showed BERT's accuracy ranging from 83% to 94%. After being optimized with PSO, the model achieved an accuracy of 98%, an F1-score of 98.31%, precision of 97.75%, and recall of 98.87%. The model was deployed using a FastAPI-based web interface, enabling real-time detection and providing users with an efficient way to quickly verify text authenticity. This research contributes a scalable, automated solution for AI-generated text detection and offers promising implications for its application in various academic and digital content verification contexts.
Volume: 15
Issue: 6
Page: 5543-5554
Publish at: 2025-12-01

Integrity verification of medical images in internet of medical things for smart cities using data hiding scheme

10.11591/ijece.v15i6.pp5770-5781
Kilari Jyothsna Devi , Ravuri Daniel , Bode Prasad , Mohamad Khairi Ishak , Dorababu Sudarsa , Pasam Prudhvi Kiran
As technology has advanced, the internet of medical things (IoMT) has become incredibly useful. It is used to transmit a wide variety of medical images. Sensitive patient data may be altered during transmission or subject to illegal access. To overcome all of these challenges and preserve the integrity of medical images while transmission over IoMT, a blind region-based data concealing approach called medical image watermarking (MIW) is suggested. The region of interest (ROI) and region of non-interest (RONI) are the two sections that make up the medical image. The aim of the suggested MIW technique is to prevent transmission-related manipulation of medical image ROI. To provide high imperceptibility and resilience, confined integrity verification and recovery bits (CIVRB) bits are embedded in the RONI using hybrid integer wavelet transform–singular value decomposition (IWT-SVD). According to the experimental results, the suggested system is highly imperceptible (average peak signal-to-noise ratio (PSNR)=56dB), robust (average NC=0.99), and exhibits integrity verification accuracy of over 98% against a variety of image processing attacks. In terms of several watermarking properties, the proposed technique performs over state-of-the-art schemes. This method offers a dependable framework for protecting medical images in real-time IoMT applications and is suitable for smart healthcare environments.
Volume: 15
Issue: 6
Page: 5770-5781
Publish at: 2025-12-01

Power loss reduction and stability enhancement of power system through transmission network reconfiguration

10.11591/ijece.v15i6.pp6012-6026
Titus Terwase Akor , Theophilu Chukwudolue Madueme , Chibuike Peter Ohanu , Tole Sutikno
The power network faces several challenges as electricity usage rises and the frequency of partial and total grid disruptions is of great concern. This paper addresses the problem of voltage instability and high-power losses in transmission network, which threatens the stability of the power grid. The MATLAB R2023a/MATPOWER 5.0 is used to develop a model and analyze using the Newton-Raphson load flow method. The analysis reveals a marginal voltage violation at Bus 13 (below 0.95 p.u.). To enhance stability and efficiency, the network was reconfigured using a hybrid whale algorithm and particle swarm optimization (WAPSO) approach, incorporating new transmission lines (5-8 and 13-14) to improve connectivity and reduce congestion. The reconfiguration reduced active power losses by 29.5% (from 36.013 to 25.371 MW) and reactive power losses by 29.8% (from 301.30 to 211.59 MVAr). The system demonstrated first swing stability, with rotor angles remaining below π/2 (1.5669 rad maximum deviation) and fault clearance within the critical clearing time (0.2 s). Optimized exciter gains and a damping coefficient of 1.5 p.u. ensured effective oscillation suppression and stable generator voltages at 1.05 p.u. The hybrid WAPSO approach proved effective in optimizing voltage and rotor angle stability, enabling the network to meet a 24.086 p.u. load demand while enhancing overall grid reliability.
Volume: 15
Issue: 6
Page: 6012-6026
Publish at: 2025-12-01

Design and experimental validation of a microstrip Vivaldi antenna-based system for breast tumor detection

10.11591/ijece.v15i6.pp5497-5505
Samiya Qanoune , Hassan Ammor , Zakaria Er-Reguig , Zouhair Guennoun
Breast cancer remains one of the leading causes of death among women worldwide, highlighting the critical need for accurate, non-invasive, and cost-effective diagnostic solutions. In light of this, microwave imaging has surfaced as a promising alternative to conventional diagnostic methods. This approach leverages its capability to differentiate between healthy and cancerous tissues by examining their dielectric properties. This study presents the design, implementation, and experimental assessment of a Vivaldi antenna-based system aimed at breast cancer detection. The antenna is designed to operate within the ultra-wideband frequency range, which facilitates high-resolution imaging and effective deep tissue penetration. Data collected from tissue-mimicking phantoms reveals the system’s proficiency in identifying anomalies, showcasing a significant contrast between malignant and normal tissue regions. We analyze various performance metrics, including signal reflection, penetration depth, and imaging resolution to substantiate the system's efficacy. The results underline the significant potential of Vivaldi antennas in improving early- stage breast cancer detection, thus contributing to advancements in microwave imaging technology.
Volume: 15
Issue: 6
Page: 5497-5505
Publish at: 2025-12-01

Securing healthcare data and optimizing digital marketing through machine learning: the CAML-EHDS framework

10.11591/ijece.v15i6.pp5728-5745
Fathi Abderrahmane , Mouyassir Kawtar , Ali Waqas , Fandi Fatima Zahra , Kartit Ali
Current healthcare data systems face major challenges in preventing unauthorized access, ensuring compliance with data privacy regulations, and enabling intelligent secondary use of patient information. To address these issues, we introduce cluster-based analysis with machine learning for enhanced healthcare data security (CAML-EHDS), a unified framework that combines homomorphic encryption, attribute-based elliptic curve cryptography (ECC), and semantic clustering with machine learning. CAML-EHDS improves upon existing models by offering fine-grained access control, adaptive threat detection, and data-driven insights while preserving privacy. Experimental results show that CAML-EHDS achieves up to 98% classification accuracy with low node count, and maintains 94% accuracy even at high node distribution levels, while ensuring encryption time under 24 seconds and acceptable data loss below 29%. Moreover, in comparative analysis with state-of-the-art models (support vector machine (SVM), random forest (RF), and decision tree (DT)), CAML-EHDS outperforms all in key metrics with an accuracy of 0.96. These results demonstrate CAML-EHDS’s potential for real-world deployment in secure, scalable, and intelligent healthcare environments, including privacy-aware digital marketing integration.
Volume: 15
Issue: 6
Page: 5728-5745
Publish at: 2025-12-01

Intuitive effectiveness degree of research methodologies for spectrum sensing in cognitive radio network

10.11591/ijece.v15i6.pp5699-5707
Pushpa Yellappa , Dr.Keshavamurthy Keshavamurthy
The phenomenon of spectrum sensing plays an essential role in cognitive radio network (CRN) that is performed in real-time for better adaptability to dynamic usage of spectrum. However, efficient decision-making is often noted to be affected by dynamic environmental condition, interference, and noise leading to declination in performance. In recent times, there are proposals for various methodologies addressing such issues targeting towards improving spectrum sensing along with machine learning and energy detection approach, which is gaining its pace for technical research implementation. Irrespective of this advancement, ambiguity shrouds regarding the contrast effectiveness associated with these methods and their appropriateness in different situation. Hence, this manuscript presents a comprehensive and yet crisp review work to offer concise assessment of latest methodologies towards spectrum sensing used in CRN ecosystem. The paper has an inclusion of existing techniques, presents their potentials and shortcomings, exhibited evolving trends of research, extracts key gaps and challenges. The prime intention of this review work is towards guiding the future researchers and scholars by facilitating deeper insight towards the recent state of technologies in spectrum sensing.
Volume: 15
Issue: 6
Page: 5699-5707
Publish at: 2025-12-01

On big data predictive analytics-trends, perspectives, and challenges

10.11591/ijece.v15i6.pp5978-5985
Yassine Benlachmi , Abdelaziz El Yazidi , Abdallah Rhattoy , Moulay Lahcen Hasnaoui
The world is experiencing explosive growth in numerous sectors such as healthcare, engineering, scientific studies, business, social networking. This growth is causing an immense surge in data generation too. And with the emergence of technologies like internet of things (IoT), Mobile, and cloud computing, the volume of data being produced is skyrocketing. However, making sense of this colossal amount of data is a daunting challenge. Enter big data computing, a new paradigm that blends large datasets with advanced analytical techniques. Big data is characterized by the three V's: Volume, velocity, and variety, and refers to massive datasets. By processing this data, we can uncover new opportunities and gain valuable insights into market trends. Traditional techniques are simply not equipped to handle the scale of Big Data. The purpose of this article is to gather reviews of various predictive analytics applications related to big data and the advantages of using big data analytics across various decision-making domains.
Volume: 15
Issue: 6
Page: 5978-5985
Publish at: 2025-12-01

Enhancing semantic segmentation with a boundary-sensitive loss function: a novel approach

10.11591/ijece.v15i6.pp5327-5335
Ganesh R. Padalkar , Madhuri B. Khambete
Semantic segmentation is crucial step in autonomous driving, medical imaging, and scene understanding. Traditional approaches leveraging manually extracted pixel properties and probabilistic models, have achieved reasonable performance but suffer from limited generalization and the need for expert-driven feature selection. The rise of deep learning architectures has significantly improved segmentation accuracy by enabling automatic feature extraction and capturing intricate object details. However, these methods still face challenges, including the need for large datasets, extensive hyperparameter tuning, and careful loss function selection. This paper proposes a novel boundary-sensitive loss function, which combines region loss and boundary loss, to enhance both region consistency and edge delineation in segmentation tasks. Implemented within a modified SegNet framework, the approach proposed in the paper is evaluated with the semantic boundary dataset (SBD) dataset using standard segmentation metrics. Experimental results indicate improved segmentation accuracy, substantiating to proposed method.
Volume: 15
Issue: 6
Page: 5327-5335
Publish at: 2025-12-01

Modified differential evolution algorithm to finding optimal solution for AC transmission expansion planning problem

10.11591/ijece.v15i6.pp5045-5054
Thanh Long Duong , Nguyen Duc Huy Bui
The transmission expansion planning (TEP) problem primarily aims to determine the appropriate number and location of additional lines required to meet the increasing power demand at the lowest possible investment cost while meeting the operation constraints. Most of the research in the past solved the TEP problem using the direct current (DC) model instead of the alternating current (AC) model because of its non-linear and non-convex nature. In order to improve the effectiveness of solving the AC transmission expansion planning (ACTEP) problem, a modified version of the differential evolution (DE) is proposed in this paper. The main idea of the modification is to limit the randomness of the mutation process by focusing on the first, second, and third-best individuals. To prove the effectiveness of the suggested method, the ACTEP problem considering fuel costs is solved in the Graver 6 bus system and the IEEE 24 bus system. Moreover, the result of each system is compared to the original DE algorithm and state-of-the-art methods such as the one-to-one-based optimizer (OOBO), the artificial hummingbird algorithm (AHA), the dandelion optimizer (DO), the tuna swarm optimization (TSO), and the chaos game optimization (CGO). The results show that the proposed algorithm is more effective than the original DE algorithm by 1.86% in solving the ACTEP problem.
Volume: 15
Issue: 6
Page: 5045-5054
Publish at: 2025-12-01

AI-MG-LEACH: investigation of MG-LEACH in wireless sensor networks energy efficiency applied the advanced algorithm

10.11591/ijece.v15i6.pp5080-5090
Hicham Ouldzira , Alami Essaadoui , Mustapha EL Hanine , Ahmed Mouhsen , Hassane Mes-Adi
Wireless sensor networks (WSNs) play a crucial role in data collection across various fields like environmental monitoring and industrial automation. The energy efficiency of these networks, powered by limited-capacity batteries, is key to their performance. Clustering protocols such as low- energy adaptive clustering hierarchy (LEACH) are widely used to optimize energy consumption. To enhance LEACH’s performance, MG-LEACH was introduced, improving cluster head selection to extend network lifespan. This study compares MG-LEACH with AI-MG-LEACH, which incorporates artificial intelligence (AI) to further improve energy efficiency by selecting cluster heads based on factors like residual energy. Simulations show AI-MG-LEACH reduces energy consumption, extends network life, and enhances data reliability, outperforming MG-LEACH.
Volume: 15
Issue: 6
Page: 5080-5090
Publish at: 2025-12-01

Explainable fault diagnosis using discrete grey wolf optimization algorithm for photovoltaic system

10.11591/ijece.v15i6.pp5286-5296
Slimani Hassina , Chouhal Ouahiba , Beddiaf Yassine , Mahdaoui Rafik , Haouassi Hichem , Hamdi Roumaissa
The present article introduces the discrete grey wolf optimization algorithm (DGWOA), a novel variant of the grey wolf optimizer (GWO). DGWOA integrates discrete optimization techniques with explainable artificial intelligence (XAI) methodologies. This approach aims to overcome limitations associated with traditional fault diagnosis methods, such as limited accuracy in identifying complex patterns and low interpretability. Furthermore, it mitigates early convergence problems commonly encountered in optimization algorithms and enhances adaptability to discrete classification challenges. The DGWOA algorithm is designed to generate interpretable classification rules for fault detection through a stochastic search strategy. The explainability provided by the model not only enhances decision-making transparency but also improves diagnostic efficiency and predictive accuracy. The proposed algorithm was evaluated using a photovoltaic system dataset and benchmarked against established rule-based classifiers. DGWOA consistently achieved a classification accuracy of 99.48% and a precision of 100%, demonstrating its effectiveness in enhancing fault detection. Moreover, the interpretability of the generated classification rules contributes to the generation of outcomes that are both actionable and comprehensible to decision-makers.
Volume: 15
Issue: 6
Page: 5286-5296
Publish at: 2025-12-01

Stability analysis and robust control of cyber-physical systems: integrating Jacobian linearization, Lyapunov methods, and linear quadratic regulator control via LMI techniques

10.11591/ijece.v15i6.pp5276-5285
Rachid Boutssaid , Abdeljabar Aboulkassim , Said Kririm , El Hanafi Arjdal , Youssef Moumani
Stability issues in cyber-physical systems (CPS) arise from the challenging effects of nonlinear dynamics relation to multi-input, multi-output systems. This research proposed a robust control framework that combines Jacobian linearization, Lyapunov stability analysis, and linear quadratic regulator (LQR) control via linear matrix inequalities (LMIs). The robust methodology does the following: it applies linearization on the dynamics of the CPS; it establishes the stability of the system using Lyapunov functions and LMIs; and it designs an LQR controller. The proposed framework was validated through a comparison between the behavior of a linearized and nonlinear model. The autonomous vehicle application showed: a settling time of 20 seconds; an overshoot of 3.8187%; and a steady-state error of 2.688×10⁻⁷. The proposed framework is robustly demonstrated and has applications to areas in automation and smart infrastructure. Future work includes optimizing the design of weighting matrices and developing adaptive control features.
Volume: 15
Issue: 6
Page: 5276-5285
Publish at: 2025-12-01
Show 7 of 1938

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration